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Résumé

Cette thèse de doctorat porte sur l’analyse numérique et le test de nouvelles méthodes pour le calcul de
l’état fondamental en théorie de la structure électronique. Nous nous concentrons sur des méthodes vari-
ationnelles basées sur la théorie des fonction d’ondes (WFT) et la théorie de la fonctionnelle de la densité
(DFT), pour lesquelles le problème de l’état fondamental consiste en la minimisation d’une fonctionnelle
d’énergie sur des familles orthonormées de fonctions carrées intégrables, dites orbitales moléculaires.

La première partie de notre travail est consacrée aux systèmes moléculaires. Dans le chapitre 1, nous
étudions des algorithmes de minimisation directe pour les modèles de Hartree-Fock restreint à couche ou-
verte (ROHF) et de champ auto-cohérent de l’espace actif complet (CASSCF), deux modèles standard de
fonction d’onde pour les systèmes à espace actif non vide (l’espace fonctionel lié à la présence d’électrons
non appairés dans le système). En utilisant les outils de l’optimisation Riemannienne sur des variétés quo-
tient matricielles, nous exprimons dans un cadre commun les algorithmes de minimisation directe pour
ROHF et CASSCF existants dans la littérature chimique, et proposons de nouveaux algorithmes dont
nous testons les performances. Dans le deuxième chapitre, ce même formalisme nous permet d’expliquer
l’instabilité inhérente aux algorithmes de champ auto-cohérent pour ROHF, qui sont les plus couramment
utilisés pour ce modèle. Nous proposons ensuite un nouveau type de méthode de point fixe qui est plus
robuste et sans paramètre, et qui rivalise avec les méthodes classiques les plus performantes. Le troisième
chapitre aborde l’optimisation des bases d’orbitales atomiques pour les systèmes moléculaires. Nous intro-
duisons un cadre mathématique général pour ce problème et comparons la précision des bases optimisées
pour certains critères d’optimisation utilisés dans la littérature sur un modèle jouet unidimensionnel.

La deuxième partie de cette thèse se concentre sur les matériaux cristallins. Le chapitre 4 est consacré
à la correction de certaines erreurs de discrétisation liées à l’utilisation de bases d’ondes planes tronquées
dans les calculs de DFT. Dans ce chapitre, nous introduisons une méthode de Galerkin basée sur l’in-
troduction d’un opérateur cinétique modifié. Nous dérivons une estimation de l’erreur d’approximation
pour les énergies obtenues et prouvons des estimées optimales sur la régulatité des diagrammes de bandes
associés, en fonction d’un paramètre défini par l’utilisateur. Enfin, le chapitre 5 détaille deux contribu-
tions numériques liées à la structure électronique du graphène bicouche twisté (TBG). Tout d’abord, nous
posons les bases d’un code de simulation du TBG en langage Julia, conçu pour être facilement utilisable
et modifiable. En second lieu, nous appliquons une méthode de compression, présente dans la littérature,
pour développer les fonctions de Wannier correspondant aux deux bandes de valence les plus basses du
graphène, dans une base d’orbitales atomiques adaptée à la symétrie. Ces fonctions compressées devraient
permettre d’effectuer de grands calculs de type liaisons fortes pour le TBG, l’un des outils principaux pour
décrire la physique nouvelle observée sur ce matériau moiré.
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Abstract

This PhD thesis is concerned with the numerical analysis and testing of novel methods for ground state
calculation in electronic structure theory. We focus on variational methods based on Wave-Function
Theory (WFT) and Density Functional Theory (DFT), for which the ground state problem consists in
the minimization of an energy functional over orthonormal families of square integrable functions, the
so-called molecular orbitals.

The first part of our work is dedicated to molecular systems. In chapter 1, we investigate direct
minimization algorithms for the restricted open-shell Hartree-Fock (ROHF) and complete active space
self-consistent field (CASSCF) models, two standard WFT models for systems with non empty active
space (which designates the space of molecular orbitals related to the presence of unpaired electrons in
the system). By using the tools of Riemannian optimization on matrix quotient manifolds, we express in
a common framework the direct minimization algorithms for ROHF and CASSCF already existing in the
chemistry literature, and propose and test the performance of new algorithms. In the second chapter, the
same formalism allows us to explain the inherent instability of self-consistent field algorithms for ROHF,
which are the most commonly used for this model. We then propose a new type of fixed-point method
that is more robust and parameter free, while competing with the best performing standard methods. The
third chapter discusses the optimization of atomic orbital basis sets for molecular systems. We introduce
a general mathematical framework for that problem and compare the accuracy of optimized basis sets for
some optimization criteria used in the literature on a one-dimensional toy model.

The second part of this PhD focuses on crystalline materials. Chapter 4 is devoted to the correction of
discretization errors related to the use of truncated Fourier basis in DFT calculations. Within this chapter,
we introduce a plane-wave Galerkin discretization method based on a modified kinetic operator. We derive
an error estimate for approximate energies and prove optimal regularity results on band diagrams, which
depend on a user-defined tunable parameter. Lastly, chapter 5 details two numerical contributions related
to the electronic structure of twisted-bilayer graphene (TBG). First we establish the groundwork for a
code in Julia language, designed as a user-friendly plateform for the simulation of TBG. Second, we use
an existing compression method to expand the Wannier functions corresponding to the two lowest valence
bands of graphene on a symmetry-adapted atomic-orbital basis. These compressed functions should allow
to perform large tight binding calculation for TBG, a useful tool to describe the novel physics observed
on this moiré materials.
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Context and motivations

The contributions made during this PhD thesis are related to the numerical analysis and implementation
of ab initio electronic structure methods. Electronic structure theory aims at describing the behavior
of electrons in materials, ranging from isolated atoms to macroscopic solids, in order to derive some of
their qualitative and quantitative properties. The ab initio methods, in particular, are derived from the
first principles of quantum mechanics and depend solely on fundamental physical constants or well-known
parameters such as nuclear masses.

The advent of quantum mechanics in the early 20th century, notably effective in predicting the behavior
of individual particles, offered a glimpse of the possibility to understand matter at all scales from first
principles. Yet, while the task is already arduous for a single particle, it becomes virtually impossible
as the number of particles increases. Each atomic nucleus or electron in matter interacts with all the
other particles, yielding a partial differential equation whose dimension grows linearly with the size of the
system. Producing precise approximations for this problem, that can be used in real-world applications,
has been a continuous effort of theoretical chemists and solid state physicists since the 1920’s.

The contribution of the mathematical community, in particular in the analysis of numerical methods, is
more recent. Mathematicians have contributed significantly to the theoretical understanding of electronic
structure models, and the practical implementation of numerical methods.

Electronic structure computations represent a substantial portion of the computation time worldwide.
Still, most numerical methods require the user to manually set input parameters (solvers, convergence
criteria, ...), which strongly influence the accuracy and computational efficiency of these methods. The
design of fast, stable and black-box algorithms should be highly beneficial to theoretical chemists and
physicists, but also to the industry, where users may lack the expertise or time to question the validity of
the calculations. This PhD thesis aims at being a small contribution to this ongoing effort.
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1 The quantum many-body electronic ground state problem
In all what follows, matter is described at the atomic level using non-relativistic quantum mechanics. In
order to reduce the dimensionality of the problem, all models are introduced in the Born-Oppenheimer
approximation [CLBM06, Appendix A], in which atomic nuclei are considered as point-like classical par-
ticles. In turn, only the electrons are described at the quantum level. We also restrict to electronic states
of lowest energy, whose physical properties are independent of time. We adopt the system of atomic units
(a.u.) in which

me = 1, e = 1, ~ = 1, 1
4πε0

= 1, (1.1)

where me is the mass of the electron, e the elementary charge, ~ the reduced Planck constant and ε0 the
dielectric permittivity of vacuum. In particular, the a.u. distance unit is the Bohr (a0), equal to the average
distance between the nucleus and the electron in the ground-state of the hydrogen atom, approximately
5.29 × 10−11 m. The atomic unit of energy is the Hartree (Ha), roughly equal to 4.36 × 10−18 J.

1.1 Physical states in quantum mechanics
In classical Hamiltonian mechanics, the physical states of a given system are described by a tuple (q, p)
of coordinates and associated momenta. This information is sufficient in the sense that two states X1 and
X2 can be distinguished by the only data of their associated tuples (q1, p1) and (q2, p2). The space of all
such tuples is called the phase space, and it is of finite dimension. In addition, physical quantities are
functions defined on the phase space.

A rather different formalism is used in quantum mechanics [BDJ02]. A quantum state is described by
a wave-function ψ. It belongs to a complex Hilbert space H, called the state space, which can be of infinite
dimension. Physical quantities are measured by means of observables. An observable A, associated to
the physical quantity a, is a self-adjoint operator on H, often unbounded with domain D(A) dense in H,
and whose spectrum is real and consists of the set of all admissible values for a. In contrast to classical
mechanics, the same experiment can provide different measurements of a. The probability that a belongs
to the open set E ⊂ R for the given state ψ is given by

‖PA(E)(ψ)‖2 (1.2)

where PA is the spectral projection-valued measure of A defined by the spectral theorem. Statistically,
the mean value of the quantity a, measured on the specific wave-function ψ ∈ H, is given by the Rayleigh
quotient

qA(ψ) := 〈ψ |Aψ〉H

‖ψ‖2 . (1.3)

The self-adjointness of A implies in particular that for all ψ ∈ Q(A), the form domain of A,

〈ψ|Aψ〉H = 〈Aψ|ψ〉H = 〈ψ|A|ψ〉H (1.4)

in the Dirac “bra-ket” notation. We will omit the index H when a single scalar product is considered.
The main focus of this PhD will be the computations of the mean value qA for the energy of a quantum
system.

Let us mention two additional features of quantum mechanics that will be used in the sections below:

1. let ψ ∈ H\{0}. For all observable A and α ∈ R, the sesquilinearity of the scalar product of H implies
qA(αψ) = qA(ψ). Indeed, the whole line {αψ | α ∈ C∗} ⊂ H represents the same physical state. In
other words, a quantum state is a point of the projective space PH. Still, it is common practice to
represent a state X by a normalized wave-function ψ, i.e. such that ‖ψ‖ = 1, rather than an element
of PH;

2. right after measurement, a given state ψ belongs to the eigenspace of A corresponding to the mea-
sured value of a. As a result, two observables that do not commute are incompatible, in the sense
that they affect each-other’s measurements. A Complete Set of Commuting Observables (CSCO) is
a set of observable that commute and whose combined measurement allow to fully differentiate two
states X1 and X2.
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1.2 Quantum description of electrons
We now briefly state how this formalism applies to the description of electrons moving in R3. From a
mathematical point of view, we introduce the N -electron state space and the observables related to energy
and spin.

1.2.1 One-electron state space

In addition to its Cartesian coordinates r = (x, y, z) ∈ R3, an electron possesses an intrinsic spin σ ∈ C2.
It is a purely quantum degree of freedom which is involved in a wide range of phenomena, from ferro-
magnetism and superconductivity to the arrangement of the periodic table. Actually, the spin parameter
characterizes the irreducible projective representations of the rotation group SO(3). In this manuscript,
we will simply introduce spin as an ad-hoc degree of freedom, as it has been in the early days of quantum
mechanics: let us denote by

↑ :=
(

1
0

)
↓ :=

(
0
1

)
the canonical basis of C2. From the Stern-Gerlach experiment (e.g. [LL19, Chapter 1]), it is natural to
postulate that one-electron states have a “spin-up” and a “spin-down” component. With this assumption,
the configuration space of a single electron is the product R3 × {↑, ↓} and the one-electron state space is
the Hilbert space

H1 := L2(R3 × {↑, ↓}; C). (1.5)

It is endowed with the scalar product

〈ψ1|ψ2〉H1 =
ˆ
R3×{↑,↓}

ψ1(r, σ)ψ2(r, σ)dµ(r, σ) with µ = λR3 ⊗ (δ↑ + δ↓), (1.6)

where λR3 is the Lebesgue measure on R3. It is sometime preferable to work with the isomorphic expression

H1 = L2(R3 × {↑, ↓}; C) ' L2(R3; C2) (1.7)

where the spin degree of freedom appears in the co-domain of the wave-functions. In that case, wave-
functions are vector-valued and are called spinors. We will use the two representations in the following
exposition.

1.2.2 N-electron state space

Now consider a system XN of N electrons. By generalizing the above description, the state space of XN

should simply read
L2
((

R3 × {↑, ↓}
)N ;C

)
. (1.8)

However, in addition to the above-mentioned constraints, multi-electron states ψ have to verify the anti-
symmetry property

∀p ∈ SN ∀(x1, . . . ,xN ) ∈
(
R3 × {↑, ↓}

)N
, ψ(xp(1), . . . ,xp(N)) = ε(p)ψ(x1, . . . ,xN ) (1.9)

with SN the group of all permutations of {1, . . . , N} and ε(p) the signature of the permutation p. This
property, known as the Pauli principle, expresses the fact that electrons are fermions. In particular it
implies that two electrons cannot be found in the same configuration x = (r, σ) ∈ R3 × {↑, ↓}, since for
all ψ verifying (1.9):

∃ i, j ∈ {1, . . . , N} s.t. xi = xj =⇒ |ψ(x1, . . . ,xN )|2 = 0, (1.10)

where we recall that |ψ
(
x1, . . . ,xN

)
|2 is interpreted as the probability to find the N electrons in respective

configurations xi. The corresponding N -electron state space reads

HN :=
{
L2
((

R3 × {↑, ↓}
)N ;C

) ∣∣∣∣ ψ verifies (1.9)
}
. (1.11)
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In practice, the properties of HN are deduced from H1. For all (ψ1, . . . , ψN ) ∈ HN
1 , and configuration

(x1, . . . ,xN ) ∈ (R3 × {↑, ↓})N , we denote

ψi1 ∧ · · · ∧ ψiN (x1, . . . ,xN ) = 1√
N !

∑
p∈SN

ε(p)ψp(i1)(x1) × · · · × ψp(iN )(xN ) (1.12)

the normalized antisymmetric product of (ψ1, . . . , ψN ), also known as Slater determinant. Then HN is
isomorphic to the antisymmetric tensor product of N copies of H1:

HN '
N∧
1

H1 = Span
{
ψ1 ∧ ψ2 ∧ · · · ∧ ψN , (ψ1, . . . , ψN ) ∈ HN

1

}
. (1.13)

1.2.3 Energy and spin observables

In the scope of this manuscript, the only observables of interest are related to the energy and the spin of
electrons.

The observable measuring the total energy E of XN is the Hamiltonian. It is a sum of terms, each
of which models a specific contribution to the total energy. In the absence of magnetic field, the non-
relativistic Born-Oppenheimer N -electron Hamiltonian has the general form

ĤN = T̂ + V̂ + Ŵee := −1
2

N∑
i=1

∆ri
+

N∑
i=1

V (ri) +
∑

16i<j6N

1
|ri − rj |

. (1.14)

It acts on HN with domain HN

⋂
H2 ((R3 × {↑, ↓})N ;C

)
. The three terms are the kinetic energy of the

electrons, the interaction of the electrons with an external potential V , and the electron-electron repulsion.
The terms V̂ and Ŵee are multiplication operators. The self-adjointness of ĤN and its spectrum, hence
the accessible energies for XN , depends on N and V , as discussed in the next section.

When it comes to spin, observables can be computed in various ways. Among the recent references,
let us cite [LL19, Chapter 1] for a phenomenological introduction from the Stern-Gerlach experiment, and
[Lew22, Section 4.1.7] for an algebraic viewpoint. In short, a one-electron spin state X , represented by a
normalized spinor ψ ∈ L2(R3;C2), can be mapped to a vector ~X of R3 whose components are given by

[ ~X ]µ = 2〈ψ | Ŝµψ〉L2(R3;C2), µ ∈ {x, y, z}. (1.15)

In the above expression, the x, y, and z-projected spin operators are defined by

Ŝµ = 1
2σµ with (σx, σy, σz) =

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
(1.16)

acting on L2(R3;C2). The matrices σµ are called the Pauli matrices. The vector ~X is unique for each spin
state. Unfortunately, the operators Ŝx, Ŝy and Ŝz do not commute. It is therefore impossible to have a
precise measurement of the three components of ~X at the same time. For that reason we introduce the
spin and spin squared observables

Ŝ = [Ŝx, Ŝy, Ŝz], Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z = 3

4

(
1 0
0 1

)
. (1.17)

The operator S2 commutes with all components of spin, and the data of a tuple (s,mz) ∈ σ
(
S2)× σ(Ŝz)

is, in practice, sufficient to discriminate spin states. From the Ŝµ operators, we construct the j-th electron
spin observables for a N -electron system as

Ŝµ,j = 1 ⊗ · · · ⊗ Ŝµ︸︷︷︸
j−th

⊗ · · · ⊗ 1, Ŝj = [Ŝx,j , Ŝy,j , Ŝz,j ] Ŝ2
j = Ŝ2

x,j + Ŝ2
y,j + Ŝ2

z,j (1.18)
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which are bounded operators on HN =
N∧
1
L2(R3; C2). We also introduce the total spin operators

Ŝµ,N =
N∑
j=1

Ŝµ,j , ŜN = [Ŝx,N , Ŝy,N , Ŝz,N ] and Ŝ2
N =

∑
µ∈{x,y,z}

Ŝ2
µ,N . (1.19)

The spectra of the total spin operators can be computed from (1.16) and (1.19). They only depend on
the number N of electrons

σ(Ŝµ,N ) =
{

−N

2 ,−
N

2 + 1, · · · , N2 − 1, N2

}
, σ

(
Ŝ2
N

)
=
{

|mz|(|mz| + 1)
∣∣∣∣ mz ∈ σ(Ŝz,N )

}
. (1.20)

Looking back at the Hamiltonian, we see that ĤN does not explicitly involve the electronic spin
components. For that reason, ĤN commutes with all spin observables, and it can be shown that ĤN , Ŝ2

N

and Ŝz,N form a CSCO as described in Section 1.1.

1.3 The many-body electronic ground state problem
1.3.1 General formulation

The N -electron ground-state problem consists in solving the optimization problem

E∗ := inf
{

E(ψ) = 〈ψ|ĤN |ψ〉
∣∣∣∣ ψ ∈ HN , ‖ψ‖ = 1

}
. (1.21)

If the spectrum of ĤN is bounded below, then (1.21) admits a solution E∗ > −∞, called the ground state
energy, which can be of two distinct kinds.

1. First, E∗ can be an eigenvalue of ĤN . Then by definition there exists a state ψ∗ ∈ HN solution of
the eigenvalue problem

ĤNψ∗ = E∗ψ∗. (1.22)

By the Rayleigh-Ritz formula, it is equivalent to the fact that the infimum in (1.21) is attained with
E∗ = E(ψ∗). The wave-function ψ∗ is called a ground state of the system XN . Since ψ∗ has a finite
HN norm, it is often referred to as a bound state : it physically describes states localized in space,
i.e. electrons that are trapped by the electronic potential generated by the nuclei.

2. Otherwise E∗ is not an eigenvalue of ĤN . By the above point, the infimum in (1.21) is not attained
and E∗ is the bottom of the continuous spectrum of HN . In addition, there are no wave-functions
in HN describing a state of energy E∗. In some instances (see e.g. [Sim81]), there exists generalized
eigenvectors ψ∗, that belong to some space larger that HN , which are solutions to the eigenvalue
equation (1.22). In particular, this kind of function has an infinite HN norm. Consequently, it
proves useful to describe delocalized physical states, such as free electrons, and is sometimes called
a scattering state.

An essential distinction between the two scenarios lies in the fact that numerical methods used to compute
the spectrum of a bounded-below self adjoint operators differ significantly when applied to point spectrum
or continuous spectrum. The problems considered in this manuscript always boil down to the first case.

1.3.2 The ground state problem for molecular systems

Let us now make one step further toward chemistry. Consider a molecule in R3, containing N electrons
and M atoms whose nuclei have respective positions R1, · · · , RM ∈ R3 and charges Z1, · · · , ZM ∈ N∗. In
the molecular case, the potential V in the Hamiltonian contains the electron-nuclei Coulomb attraction
and nuclei-nuclei Coulomb repulsion

V (r) = −
M∑
α=1

Zα
|Rα − r|

+
∑

16α<β6M

ZαZβ
|Rα −Rβ |

(1.23)
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In that setting, the molecular Hamiltonian writes

ĤN = −1
2

N∑
i=1

∆ri −
N∑
i=1

M∑
α=1

Zα
|Rα − ri|

+
∑

16i<j6N

1
|ri − rj |

+
∑

16α<β6M

ZαZβ
|Rα −Rβ |

. (1.24)

Remark that the last term is independent of the electronic configuration, and acts as a simple shift in
energies. The characterization of the spectrum of the molecular Hamiltonian, ignoring the electronic spin,
is a classical result that can be found e.g. in [RS78, Chapter XIII], [Zhi60]. Let us also refer to the more
recent work [Lew22]. Since the presence of electronic spin does not affect the nature of the spectrum of
ĤN , we can write the following

Theorem 1.1 (Spectrum of ĤN in the molecular case.).
Let us denote by Z =

∑M
α=1 Zα the total charge of the system and suppose that N 6 Z. Then

• the molecular Hamiltonian ĤN is self adjoint on HN with domain HN

⋂
H2 ((R3 × {↑, ↓})N ;C

)
,

and its spectrum is bounded from below (from [Lew22, Theorem 6.1]);

• there exists ΣN ∈ R such that the essential spectrum of ĤN is σess(ĤN ) = [ΣN ,+∞[ (from
[Lew22, Theorem 6.5]);

• there exists an infinity of eigenvalues (εi,N )i∈N of finite multiplicity below the essential spectrum,
accumulating at ΣN . (from [Lew22, Theorem 6.14]).

Bound states

ε0,N ε1,N · · · ΣN R

Scattering states

σess

(
ĤN

)

Figure 1 – Illustration of Theorem 1.1. If N 6 Z, the spectrum of ĤN is bounded below. The discrete
spectrum consists of a sequence of eigenvalues (εi,N ), which accumulate at the bottom of the essential
spectrum ΣN .

From Theorem 1.1, a molecular system possesses a ground state ψ∗ ∈ HN as long as the number of
electrons N does not exceed the total charge Z. In its current form, however, the ground state problem
has a complexity that grows exponentially with the number of electrons, making it unsolvable in practice.
This natural barrier, known as the curse of dimensionality, motivates the introduction of approximation
methods in the following Section 2.
Remark 1.1 (Excited states). The molecular Hamiltonian possesses an infinite number of eigenvalues
below its essential spectrum, hence an infinite number of bound states. Apart from the ground state, which
corresponds to the smallest eigenvalue, these states are called excited states. They describe physical states
of the system that can be reached after an excitation by a external source of energy (in the approximation
when the atoms stay fixed).

1.3.3 The case of the non-interacting-electron atom

Yet, there exists an important case in which eigenvalues and eigenvectors can be computed analytically.
This is the set of N non-interacting electrons, subject to the attraction of a single nucleus of charge Z,
i.e.:

V (r) = − Z

|r|
and Ŵee = 0. (1.25)
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The most simple example N = Z = 1, corresponds to the hydrogen atom. From (1.25), the N -electron
Hamiltonian for the non-interacting-electron atom is the operator defined on HN as

ĤN =
N∑
i=1

(
−1

2∆ri − Z

|ri|

)
=

N∑
i=1

1 ⊗ · · · ⊗ Ĥ1(Z)︸ ︷︷ ︸
i−th

⊗ · · · ⊗ 1. (1.26)

As seen in the above right-most expression, the electronic properties of the non-interacting-electron atom
are encoded in the one-electron Hamiltonian Ĥ1(Z) = − 1

2 ∆ − Z
|r| . From Theorem 1.1, the discrete

spectrum of Ĥ1(Z) is an infinite sequence of eigenvalues. Since Ĥ1(Z) is radially symmetric, in the sense
that it commutes with all the spatial rotations, the bound states of Ĥ1(Z) can be computed in spherical
coordinates, as a product of a radial part and an angular part [CLBM06]

ψnlmσ(r, θ, φ, σ′) = e−ZrRnl(Zr)Ylm(θ, φ)δσσ′ , (1.27)

where n ∈ N∗, l ∈ {0, 1, . . . , n− 1}, m ∈ {−l,−l+ 1, . . . , l− 1, l} and σ ∈ {↑, ↓}. The Ylm are the spherical
harmonics and each Rnl is a polynomial of degree n − l − 1. For a fixed n ∈ N∗, all the states ψnlmσ
belong to the same eigenspace of energy

εn = − Z

2n2 . (1.28)

In quantum chemistry, these eigenvectors are called atomic orbitals (AOs). They are the building blocks
of atomic basis sets, presented in the Section 3.4 of this introduction, which are the most popular reduced
bases for the resolution of molecular ground state problems. In chemistry, AOs are labeled using the first
quantum number n, followed by a letter corresponding to the quantum number l with the rule: l = 0 −→ s,
l = 1 −→ p, l = 2 −→ d, l = 3 −→ f, etc. Some s, p, d and f type of AOs are shown in Figure 2.

(a) 1s orbital (b) 2p orbital (c) 3d orbital (d) 4f orbital

Figure 2 – Illustration of the first four type of atomic orbitals, denoted with the standard (spdf. . .)
convention. Each plot is a level set, where the colors represent the sign of the function. Source: adapted
from Wikipedia Commons.

From (1.26) the ground-state of the N -electron Hamiltonian ĤN is obtained by summing the smallest
N eigenvalues ε1 6 · · · 6 εN of Ĥ1(Z). Another way to write the ground-state energy is to introduce a
chemical potential µ defined by

µ = 1
2(εHO + εLU) (1.29)

where εHO and εLU are the respective energies of the highest occupied (HO) state and lowest unoccupied
(LU) (or virtual) state. When the ground state is non-degenerate (i.e. εHO < εLU) the associated energy
reads as the sum

E∗ =
∑
n∈N

εn1(εn 6 µ). (1.30)

Otherwise, if Nµ denotes the number of electrons in the system with energy µ, then

E∗ =
∑
n∈N

εn1(εn < µ) +Nµµ. (1.31)

This is known as the Aufbau principle. It justifies the common representation that, in the ground state of
a system XN , the electrons “fill” the first energy levels, pictured as the rungs of a ladder.
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1.3.4 The ground state problem for solid material

The ground state problem is way more challenging for solid materials, where the number of variable
virtually tends to infinity. As an example, a one micrometer cube of silicon contains roughly 1010 atoms
and of the order of 1011 electrons. This renders the formulation and analysis of any N -electron Hamiltonian
or wave-function practically impossible. A way around the problem relies on the introduction of additional
approximations, as well as the Bloch transform, a mathematical tool whose description is postponed to
Section 4.

2 Variational approximations of ground states
In order to get around the curse of dimensionality, quantum chemists and physicists have produced nu-
merous solvable approximations of the ground state problem (1.21). The most classical approximations
fall into four categories: wave-function methods (WFM), methods based on popular density functional
theory (DFT), quantum Monte-Carlo methods (QMC) and Green’s function methods (GFM). In this
manuscript, we have focused on variational WFM and DFT methods, of which we provide a brief intro-
duction bellow. The central object of interest is the wave function of the system in the first category and
the electronic density in the second one. For a broader view, we advise the reader to consult the literature,
in particular the books [CLBM06; LL19; CF23] for a general mathematical introduction. We also refer to
the comprehensive chemistry “pink bible” [HJO14] for wave-functions methods and to the review [Tou22]
for density functional theory.

2.1 Variational Wave-function methods
2.1.1 Configuration Interaction and Multi-configuration problems

In variational wave-functions methods, the energy in (1.21) is minimized on a finite dimensional subspace of
HN . Defining this variational space amounts to selecting a discretization basis (understand an orthonormal
family of finite rank) of HN , which can be built systematically from discretization basis sets of H1. Indeed,
let Φ := (φi)i∈N be an orthonormal basis of H1 and

IN :=
{

(i1, · · · , iN ) ∈ {1, . . . ,N}N , i1 < · · · < iN

}
. (2.1)

For a given I ∈ IN , let ΦI := φi1 ∧ · · · ∧ φiN abbreviate the Slater determinant of (φi1 , . . . , φiN ), as
defined in (1.12). From (1.13) (see e.g. [Lew04, Lemma 1]), all normalized wave-function ψ ∈ HN can be
expanded as an infinite sum of Slater determinants of N basis functions in Φ

ψ =
∑
I∈IN

λIΦI , with
∑
I∈IN

|λI |2 = 1. (2.2)

As often in the chemistry literature, we will refer to the functions φi as molecular orbitals, since they serve
as the analogue, for molecular systems, to the atomic orbitals introduced for the non-interacting-electron
atom (Section 1.3.3).

From this point, approximations of ψ can be constructed either by taking a discretization basis set of
Φ of rank K > N , or by truncating the sum, selecting a finite set of Slater determinants in IN . For all
K > N , let

BK :=
{

Φ = (φ1, · · · , φK) ∈ HK
1 , 〈φi|φj〉H1 = δij ∀1 6 i, j 6 K

}
,

IKN :=
{

(i1, · · · , iN ) ∈ {1, · · · ,K}N , i1 < · · · < iN
}
.

(2.3)

Given a basis Φ ∈ BK and a set of determinants J ⊂ IKN , the variational space we obtain writes

WK
N (Φ,J ) :=

{
ψ =

∑
I∈J

λIΦI , λI ∈ C,
∑
I∈J

|λI |2 = 1
}
, (2.4)
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with dimension dim(WK
N ) = |J | 6

(
K
N

)
. The corresponding ground state energy is called the Configuration

Interaction (CI) energy

ECI(Φ,J ) := min
ψ∈WK

N
(Φ,J )

〈ψ| ĤN |ψ〉. (2.5)

By construction, it holds
ECI(Φ,J ) > (Eexact)∗ (2.6)

and the approximation is exact in the limit J = IKN , K → +∞, which is standard with Galerkin methods.
For a fixed basis Φ = (φi)16i6K , the list of determinants J is either set by a systematic procedure, as in

the CISD (CI Single Double) approach [HJO14, Section 5.6], or more general selected-CI (see [Eva14] and
references therein). Sometimes, it is chosen by hand, following chemical intuition and experiments. The
Full-CI (FCI) method uses the complete set of determinant J = IKN . It is the best possible approximation
for a given basis Φ, though the factorial growth of the number of determinants with the number K makes
it challenging to use in practice. For these reasons, selecting an expansion that is both accurate and
computationally efficient is an ongoing area of research in quantum chemistry.

Of course, the quality of the CI method depends on the chosen basis set Φ = (φi)16i6K . For a fixed
expansion J , the best approximation is obtained by optimizing over all possible basis sets Φ ∈ BK , which
reads as a nested minimization problem called the Multi-Configuration Self-Consistent Field problem

min
Φ∈BK

min
Λ∈C|J|

EMCSCF(Φ,Λ) :=
{

〈ψ | HN |ψ〉
∣∣∣∣ Λ = [λI ]I∈J , ψ =

∑
I∈J

λIΦI , ‖Λ‖2
C|J | = 1

}
. (2.7)

The above presentation is inspired by [Lew04], which provides a mathematical proof of the existence of
solutions to the multi-configuration problem.
Remark 2.1. Beware that, in quantum chemistry, the term self-consistent field (SCF) refers both to the
general problem of optimizing the molecular orbitals, i.e. the outer minimization appearing in (2.7), and
to a class of numerical methods to solve this problem. The SCF class of numerical methods is the subject
of Section 3.3

2.1.2 The Hartree-Fock approximation

The Hartree-Fock (HF) method can be seen as the simplest truncation of the MCSCF problem. It consists
in solving (2.7) for single determinant wave-functions (i.e. setting K = N). Although this might seem
a crude approximation, the Hartree-Fock ground state is exact in the case Ŵee = 0, where the electrons
are non-interacting. For interacting electrons, the accuracy of the HF approximation is measured by the
correlation energy

Ec = (Eexact)∗ − (EHF)∗ < 0. (2.8)
If Ec is very small, the system is weakly correlated, and the Hartree-Fock determinant is already a good
approximation of the ground state. Otherwise, the system is said to be strongly correlated, and one needs
to resort to other methods to capture the missing correlation.

Let Φ = (φ1, · · · , φN ) ∈ BN be a given discretization basis. Setting ψ = φ1 ∧ · · · ∧ φN in (2.7), a
standard computation provides the Hartree-Fock energy

EHF(Φ) =
N∑
i=1

ˆ
R3×{↑,↓}

|∇φi|2 +
ˆ
R3
ρψV + 1

2

ˆ
R3

ˆ
R3

ρψ(r)ρψ(r′)
|r − r′|

drdr′ − 1
2

ˆ
R3

ˆ
R3

|γψ(r, r′)|2

|r − r′|
drdr′

(2.9)
with the density matrix of order 1 and the electronic density

γψ(r, r′) =
∑

σ∈{↑,↓}

N∑
i=1

φi(r′, σ)φi(r, σ), ρψ(r) = γψ(r, r). (2.10)
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2.1.3 Separate molecular orbitals

The formulation we have given for the MCSCF (2.7) and HF (2.9) problems are sometimes called General
MCSCF (GMCSCF) and General HF (GHF), since the molecular orbitals φi can be any functions of H1.
In our specific case, where the Hamiltonian ĤN is time-reversal symmetric and commutes with the spin
operators, we can assume without any loss of generality that the functions φi are real-valued, and separate
the spatial and spin coordinates

∀(r, σ) ∈ R3 × {↑, ↓}, ∀i ∈ {1, · · · , N}, φi(r, σ) = ϕi(r)τi(σ), (2.11)

which we can also write φi = ϕi ⊗ τi. The spatial part is a real square integrable function ϕi ∈ L2(R3;R)
and the spin part τi is equal to either α := σ 7→ δ↑σ or β := σ 7→ δ↓σ (this case where τi takes its values
in {0, 1} is also known as collinear spins).

2.1.4 Imposing the right symmetry with Configuration State Functions.

We have seen in the Section 2 that the exact N -electron ground state is an eigenfunction of the spin
observables Ŝ2

N and Ŝz,N . While Slater determinants are eigenfunctions of Ŝz,N , they are not in general
eigenfunctions of the total spin operator Ŝ2

N [HJO14, Chapter 2]. For that reason, approximate CI wave-
functions, built as a sum of Slater determinants, do not necessarily satisfy the proper spin symmetry that
is expected for the true ground state.

To look for a solution in a targeted spin configuration (s,mz) ∈ σ(Ŝ2
N ) × σ(Ŝz,N ), a natural strategy

is to expand the N -electron wave function ψ on a basis (ψ(s,mz)
k )16k6L of L spin-eigenfunctions

ψ =
L∑
k=1

ckψ
(s,mz)
k (2.12)

where for all 1 6 k 6 L

Ŝ2
Nψ

(s,mz)
k = s(s+ 1)ψ(s,mz)

k and Ŝz,Nψ
(s,mz)
k = mzψ

(s,mz)
k . (2.13)

The functions ψ(s,mz)
k are called Configuration State Functions (CSFs) for the spin configuration (s,mz).

The CI states obtained as a sum of CSFs are called spin-restricted, while they are labeled spin-unrestricted
for Slater determinants. Configuration state functions provide an alternative basis for the CI approach,
that produces states with the proper symmetry, at the cost of being more complicated to handle.

In practice the two approaches, using respectively Slater determinants or CSFs, are linked. Configu-
ration state functions can be systematically built from a basis Φ ∈ BK of molecular spin-orbitals, as the
sum of several determinants

ψ
(s,mz)
k =

∑
I∈Jk

λkIΦI (2.14)

where the coefficients (λkI )I∈Jk
and the expansion Jk are imposed by the spin symmetry requirement (see

[HJO14, Section 2.6] on the systematic construction of CSFs with the genealogical coupling scheme). For
separate spin orbitals (2.11), the spin restrictions (2.13) directly translate as restrictions on the spatial
and spin parts of the basis Φ. Indeed let Φ = (ϕ1 ⊗ τ1, · · · , ϕK ⊗ τK) and consider a CSF ψ(s,mz) as in
(2.14). We introduce for all determinants ΦI = ϕi1 ⊗τi1 ∧ . . .∧ϕiN ⊗τiN the occupation number operators

∀ i ∈ {1, · · · ,K}, ∀ τ ∈ {α, β}, N̂iτΦI = niτΦI , niτ =
∣∣∣∣ 1 if ∃n ∈ I s.t. ϕn = ϕi and τn = τ

0 otherwise
(2.15)

and N̂i = N̂iα + N̂iβ . The operators N̂i commute with Ŝ2 and Sz [HJO14], so that one can impose that
ψ(s,mz) is a common eigenfunction of all N̂i. Therefore ψ(s,mz) can be associated to an occupation vector
n(ψ(s,mz)) = (n1, . . . , nK) ∈ {0, 1, 2}K such that

K∑
i=1

ni = N and N̂iψ
(s,mz) = niψ

(s,mz). (2.16)
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Going one step further, consider an approximate CI state in the spin-restricted setting

ψ =
L∑
k=1

ckψ
(s,mz)
k (2.17)

for a given basis (ψ(s,mz)
1 , . . . , ψ

(s,mz)
L ) of CSFs. Up to reordering the molecular orbitals, one can assume

that:

∀ 1 6 i 6 Ni, ∀k ∈ {1, . . . , L}, [n(ψ(s,mz)
k )]i = 2,

∀Ni + 1 6 i 6 Ni +Na, ∃k ∈ {1, . . . , L}, [n(ψ(s,mz)
k )]i = 1,

∀Ni +Na + 1 6 i 6 K, ∀k ∈ {1, . . . , L}, [n(ψ(s,mz)
k )]i = 0.

(2.18)

Then the first 2Ni spin-orbitals of Φ are called doubly-occupied or internal orbitals. They verify

∀ 1 6 i 6 Ni, ϕ2i−1 = ϕi, τ2i−1 = α and τ2i = β. (2.19)

The next Na orbitals are referred to as active orbitals, without specific constraints. They can be separated
into Nα spin-up and Nβ spin-down orbitals

φi = ϕi ⊗ α ∀ 2Ni + 1 6 i 6 Ni +Nα,

φi = ϕi ⊗ β ∀ 2Ni +Nα + 1 6 i 6 Ni +Nα +Nβ︸ ︷︷ ︸
Na

. (2.20)

Finally, the last orbitals are known as external or virtual orbitals, which are unoccupied for every config-
uration. The numbers Ni, Na, s and mz verify

2Ni +Na = N and |mz| 6 s 6
1
2Na. (2.21)

Configuration state functions are generally the sum of several determinants. In this manuscript, we
will restrict to the particular high-spin and closed-shell cases, respectively defined by s = mz = 1

2Na and
s = 0, for which single Slater determinants are CSFs. The generalization to arbitrary spin-states is a
straightforward yet tedious exercise (see again [HJO14, Section 2.6]).

2.1.5 Unrestricted and spin-restricted Hartree-Fock

Additional information can be given when it comes to the Hartree-Fock method in spin-restricted setting.
Since the HF ground state is a single Slater determinant, all the Na = Nα + Nβ active orbitals are
necessarily singly-occupied. The high-spin spin-restricted Hartree-Fock corresponds to the choice Nβ = 0.
It is called Restricted Hartree-Fock (RHF) for Nα = 0 and Restricted Open-shell Hartree-Fock (ROHF) for
Nα > 0. The Unrestricted Hartree-Fock (UHF) corresponds to Ni = 0. The spin constraints on molecular
orbitals in the generalized, spin-restricted and spin-unrestricted Hartree-Fock models are pictured in the
Figure 3.

Inserting (2.19) and (2.20) into (2.9), we see that the Hartree-Fock energy in the spin-restricted setting
only depends on the Ni + Na first spatial parts of the molecular orbitals, through the the internal and
active density matrices:

γi(r, r′) = 2
Ni∑
i=1

ϕi(r′)ϕi(r), γa(r, r′) =
Na∑

i=Ni+1
ϕi(r′)ϕi(r). (2.22)

2.1.6 Post Hartree-Fock methods

Even in the case of strongly correlated system, it is common practice to use a Hartree-Fock ground state
ΦHF as a starting guess for other, more elaborate methods, which are then commonly referred to as Post
Hartree-Fock methods (PHF).
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Figure 3 – Pictorial representation of the constraints on molecular orbitals in the generalized, spin-
restricted and spin-unrestricted Hartree-Fock models. The RHF and ROHF models correspond to the
spin-restricted Hartree-Fock in the closed-shell (s = 0) and open-shell (s = mz > 0) settings. The α and
β spin-parts are respectively pictured as up and down arrows.

Variational PHF methods simply consist in solving a MCSCF problem starting from a basis optimal
at the Hartree-Fock level. For example, the popular Complete Active Space SCF (CASSCF) divides some
HF orbitals into internal, active and virtual orbitals. The wave-functions is then expanded on the set of
CSFs constructed by distributing a number Ne

a of valence (or active) electrons among the active orbitals
in all possible ways, which is usually abbreviated to CAS(Ne

v ,Na).

Another important family of PHF methods are non variational approaches. Some methods, as Møller-
Plesset theory (MP) [HJO14], rely on perturbation theory to compute correction terms to the HF energy.
The most successful non-variational PHF method for the calculation of energies is the single reference
coupled cluster (CC) [BM07; HMW23], that provides a non linear approximation of the true ground
state, as the result of the action of a parameter-dependent operator on ΦHF (note however that other
reference wave-functions can be used). The coupled cluster operator is built as the exponential of a linear
combination of so-called excitation operators, whose truncation gives rise to various flavors of the CC
methods.

2.2 Methods based on Density Functional Theory
Exact Density Functional Theory (DFT) offers a theoretical tool for computing the ground state energy
(1.21) that relies solely on one-body electronic densities, leading to a dramatic reduction in the dimen-
sionality of the problem. Applicable to a broad range of systems, this method relies on the introduction
of a universal functional of which no explicit expression is known. Various approximations of this exact
functional have been suggested, with the Kohn-Sham DFT being the most popular, giving rise to a wide
variety of approximate DFT methods.

2.2.1 Exact DFT

The following exposition is based on [Tou22]. The main results are the work of Hohenberg and Kohn
[HK64], Levy [Lev79] and Lieb [Lie02]. We define the set of N -representable densities as

IN =
{
ρ ∈ L1(R3;C), ρ > 0, √

ρ ∈ H1(R3;C),
ˆ
R3
ρ = N

}
(2.23)

For a given ρ ∈ IN , let

Hρ
N =

{
ψ ∈ HN ∩H1 ((R3 × {↑, ↓})N ;C

)
,

ρψ(r) := N

ˆ
{↑,↓}×(R3×{↑,↓})N−1

|ψ ((r, σ),x2, · · · ,xN ) |2dσdx1 · · · dxN = ρ

}
.

(2.24)
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be the set of wave-functions ψ with density ρ. For all ρ ∈ IN , the set Hρ
N is not empty, and we can define

the Levy-Lieb density functional as the mapping F : IN → R defined by

F (ρ) = min
ψ∈Hρ

N

〈ψ|T̂ + Ŵee|ψ〉 = 〈ψ[ρ]|T̂ + Ŵee|ψ[ρ]〉 (2.25)

where T̂ and Ŵee are the N -electron Hamiltonian terms defined (1.14). The minimizer ψ[ρ] ∈ Hρ
N exists

but is not necessary unique [Lie02; LLS22]. The universal functional allows to re-write the ground state
problem (1.21) as a minimization problem on IN

E∗ = min
ρ∈IN

{
F (ρ) +

ˆ
R3
ρV

}
. (2.26)

This formulation proves highly advantageous. In (2.26), the ground state energy is found by minimization
over densities, which are functions of 3 variables, instead of many-body wave-functions. In particular, the
dimensionality of the DFT ground state problem is independent of the number of electrons. However,
there are no explicit formula for the universal functional F . The most popular scheme to circumvent the
problem has been proposed by Kohn and Sham.

2.2.2 Kohn-Sham DFT

The idea of Kohn-Sham density functional theory (KS-DFT) is to decompose the universal functional F
as the sum of an explicit term, computed in a single determinant approximation, plus a correction energy
which can be approximated.

Let us introduce the set of Slater determinants SρN ⊂ Hρ
N with density ρ. Again, from [Lie02], this set

is not empty and the minimization problem in the definition (2.25) of the universal functional F restricted
to SρN , has a solution Φ[ρ]

FS(ρ) = min
Φ∈Sρ

N

〈Φ|T̂ + Ŵee|Φ〉 = 〈Φ[ρ]|T̂ + Ŵee|Φ[ρ]〉. (2.27)

The energy (2.26) is explicit by replacing F with FS and is simply given by the Hartree-Fock energy (2.9)
evaluated at Φ[ρ]. As for Hartree-Fock, this approximation is exact for non-interacting electrons. In the
general case, the inclusion SρN ⊂ Hρ

N implies

F (ρ) 6 FS(ρ) (2.28)

and the difference between the non-interacting electronic system and the real one is measured by the
correlation functional

Ec(ρ) = 〈ψ[ρ]|T̂ + Ŵee|ψ[ρ]〉 − 〈Φ[ρ]|T̂ + Ŵee|Φ[ρ]〉 6 0. (2.29)

In KS-DFT, the universal functional is written in terms of the correlation energy as

F (ρ) =
N∑
i=1

ˆ
R3×{↑,↓}

|∇φi(x)|2dx + 1
2

ˆ
R3

ˆ
R3

ρ(r)ρ(r′)
|r − r′|

drdr′ −1
2

ˆ
R3

ˆ
R3

|γΦ[ρ](r, r′)|2

|r − r′|
drdr′ + Ec(ρ)︸ ︷︷ ︸

Exc(ρ)
(2.30)

where the last two terms have been gathered in the exchange-correlation (XC) functional Exc(ρ). With
that expression, the KS-DFT minimization problem reads as a minimization on orbitals

(EKS)∗ = min {EKS(Φ), Φ ∈ BN} , (2.31)

with BN as in (2.3) and where

EKS(Φ) =
N∑
i=1

ˆ
R3×{↑,↓}

|∇φi(x)|2dx +
ˆ
R3
ρΦV + 1

2

ˆ
R3

ˆ
R3

ρΦ(r)ρΦ(r′)
|r − r′|

drdr′ + Exc(ρΦ). (2.32)
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with ρΦ the density of the Slater determinant built from Φ. Minimizers Φ∗ = (φ1∗, . . . , φN∗) for (2.32) are
usually called Kohn-Sham orbitals, and the associated Slater determinants φ1∗ ∧· · ·∧φN∗ are called Kohn-
Sham (KS) determinants. The KS-DFT model for zero exchange-correlation Exc = 0 is called reduced
Hartree-Fock (rHF).

In KS-DFT, the difficulty of evaluating the functional F has been transferred on the XC functional,
and the accuracy of the model depends on the approximation of Exc. As for wave-function methods,
one often imposes that the molecular spin-orbitals read as the product of a spatial part and a spin part,
yielding to spin-restricted or spin-unrestricted KS-DFT.

2.2.3 Approximations of the KS exchange-correlation functional

There exists a wide-variety of approximate exchange-correlation functionals. They are usually classified
according to the rungs of the so-called “Jacob’s ladder” of exchange-correlation functionals (Figure 4),
ranging in complexity from no exchange-correlation (Exc = 0) at ground level, to exact exchange correlation
at the top. The first rung of the ladder is the LDA functional [KS65]. Introduced by Kohn and Sham in
1965, it is defined as

ELDA
xc (ρ) =

ˆ
R3
eUEG

xc (ρ(r))dr, (2.33)

where eUEG
xc : R+ → R is the exchange-correlation energy density of the infinite uniform electron gas

(UEG). It is a local approximation in the sense that it only uses local values of the density ρ.

LDA

GGA

Meta-GGA

Hybrid

Double-hybrid

reduced HF

Full correlation

Figure 4 – Jacob’s ladder of exchange-correlation functionals. It ranges from the reduced Hartree-Fock at
ground level, to exact exchange-correlation at the heaven level. The first two rungs only depend on the
density ρ and its derivatives. The next rungs also incorporate fractions of the exact exchange for the KS
determinant Φ[ρ].

On the second and third rungs, the Generalized Gradient Approximation (GGA) and Meta-GGA
approximations have energy densities that depend on the density ρ, but also on the first derivative of ρ
for GGA, and first and second derivatives for Meta-GGA. For that reason they are often called semi-local
approximations. Among the GGA approximation, let us cite the PBE functional [PBE96], widely used in
solid state physics, and a central tool for the computations of the Part II of this manuscript.

Finally, the fourth and fifth rungs target the two main known deficiencies of local and semi-local ap-
proximations, which are the self-interaction error and the absence of long-range van der Waals interactions.
Since they incorporate a fraction of the exact exchange energy of the HF determinant

Ex(ΦHF) = −1
2

ˆ
R3

ˆ
R3

|γΦHF(r, r′)|2

|r − r′|
drdr′, (2.34)

they are referred to as hybrid-functionals. Again, we refer to [Tou22] for a complete review of approximate
XC functionals.
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On the ladder, the functional are sorted by increasing complexity, which should not be confused
with increasing accuracy. There is no direct link between rung level and the overall accuracy of the
approximations. Functionals are often optimized to target specific quantities or specific systems. For
practical applications, it is necessary to refer to XC-functional benchmarks in order to choose functional(s)
best suited for the task.

3 Solving the approximate ground state problems
In the preceding section, we presented a series of “solvable” problems, in the sense that their reduced
dimensionality makes their numerical resolution feasible. In that regard, the next natural step is to
translate these approximate models in a discrete framework, allowing for the use of general minimization
algorithms.

We have seen that the approximate models consist in two minimization problems.

1. Given a reduced basis of rank K > N and an expansion J ∈ IKN , the CI problem finds the coefficients
Λ∗ ∈ C|J | that minimize the CI energy.

2. For a given Λ, the self-consistent field problem finds the best basis Φ∗ ∈ BKN in terms of energy.

It is clear that only the second problem has to be discretized. In quantum chemistry, the elements of
a discretization basis X for the SCF problem are usually atomic orbitals (AO), as introduced for the
non-interacting-electron atom in Section 1.3.3. Further details on the construction of AO basis sets are
provided in Section 3.4.

3.1 Discretization of the self-consistent field problem
3.1.1 Parametrizations of discrete states in molecular orbital and density matrices for-

malisms

In this manuscript, where the spatial and spin coordinates can be separated, only Ni+Na occupied spatial
parts ϕ1, . . . , ϕNi+Na of L2(R3;R) have to be optimized. Let No = Ni + Na and X = (χ1, · · · , χNb

) be
a discretization basis of L2(Rd;R) of size Nb > No. After discretization, a trial wave-function ψ is
represented by a matrix C = (Ci |Ca) ∈ RNb×No containing the coefficients of the spatial parts ϕi in the
basis X :

ϕi(r) =
Nb∑
µ=1

[Ci]µiχµ(r), 1 ≤ i ≤ Ni,

ϕNi+i(r) =
Nb∑
µ=1

[Ca]µiχµ(r), 1 ≤ i ≤ Na.

(3.1)

In practice, the χµ’s are non-orthogonal atomic orbitals. In order to simplify the presentation, we will
however assume here that the basis X is orthonormal, or equivalently that the overlap matrix is the
identity matrix:

Sµν :=
ˆ
R3
χµ(r)χν(r) dr = δµν . (3.2)

Let us emphasize that we make this simplification for pedagogical purposes only; extending our arguments
to non-orthogonal basis sets is a simple exercise. In that setting, the orthonormality constraints on the
orbitals imply that C is a rectangular orthogonal matrix; in other words, a point of the Stiefel manifold

C ∈ St(No;Nb) := {C ∈ RNb×No s.t. CTC = INo} (3.3)

where INo denotes the identity matrix in RNo×No . We call this formalism occupied MOs (OMO).

When the number Nb of basis functions is relatively small, it proves advantageous to keep track of
additional Ne = Nb − No virtual orbitals, although they do not contribute to the energy. The matrix
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C = (Ci|Ca|Ce) ∈ RNb×Nb becomes a point of the orthogonal group ONb
. We obtain the all MOs (AMO)

formalism:

C = (Ci|Ca|Ce) ∈ ONb
. (3.4)

The structure of ONb
is simpler that the Stiefel manifold St(No;Nb). It is a smooth Lie group with Lie

algebra RNb×Nb

skew , the set of Nb × Nb real skew-symmetric matrices, so that there exists κ ∈ RNb×Nb

skew such
that C = exp(κ). In quantum chemistry, the matrix κ is usually referred to as a rotation operator, and
provides another parametrization for discrete states, equivalent to OMO

C ∈
{
eκ, κ ∈ RNb×Nb

skew

}
. (3.5)

Alternatively, a state can be represented by a pair of matrices (Pi, Pa) ∈ RNb×Nb × RNb×Nb collecting
the coefficients of the one-particle density matrices (DM) on spatial parts,

γi =
Ni∑
i=1

|ϕi〉〈ϕi| and γa =
No∑

i=Ni+1
|ϕi〉〈ϕi| (3.6)

in the basis set X :

γi =
Nb∑

µ,ν=1
[Pi]µν |χµ〉〈χν | and γa =

Nb∑
µ,ν=1

[Pa]µν |χµ〉〈χν |.

A point C ∈ St(No;RNb) and a couple (Pi, Pa) are related by

Pi = CiC
T
i , Pa = CaC

T
a , (3.7)

from which it follows that 
P 2
i = Pi = PTi , Tr(Pi) = Ni,

P 2
a = Pa = PTa , Tr(Pa) = Na,

PTi Pa = 0.
(3.8)

We deduce the form of the set of discrete states in DM formalism

MDM(Ni, Na;RNb) :=
{

(Pi, Pa) ∈ RNb×Nb
sym × RNb×Nb

sym s.t. P 2
i = Pi,

Tr(Pi) = Ni for i ∈ {1, 2} and PTi Pa = 0
}
.

(3.9)

3.1.2 Adding gauge invariance

An important difference between the DM and MO formalisms (OMO and AMO) is that a trial state is
represented by one and only one point of MDM(Ni, Na;RNb), which is not the case in MO formalisms.
Indeed one notices that for all C = (Ci|Ca) ∈ St(No;RNb), the MCSCF of KS-DFT approximate energies
are invariant under any unitary transformations on orbitals of the same type i or a. For that reason, a
trial state, discretized as C ∈ St(No;RNb), is represented by an infinity of points in St(No;RNb), namely
the set

[C] =
{
CU := C

(
Ui 0
0 Ua

)
= (CiUi|CaUa), where U = (Ua|Ui) ∈ ONi × ONa

}
⊂ St(No;RNb ).

(3.10)
One way to recover the unicity of representation of trial states in MO formalism relies on the notion

of quotient manifold. We introduce the equivalence relation on St(No;RNb) defined by

C ∼ C ′ ⇔ ∃U ∈ ONi
× ONa

such that C = C ′U (3.11)
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and we define the MO discrete state manifold as the quotient

MOMO(Ni, Na;RNb) := St(No;RNb)/ ∼= St(No;RNb)/(ONi
× ONa

). (3.12)

Then MOMO(Ni, Na;RNb) is diffeomorphic to both MDM(Ni, Na;RNb) and the approximate N -electron
state space. Similarly, we can define the AMO manifold as the quotient

MAMO(Ni, Na;Nb) := ONb
/(ONi

× ONa
× ONe

). (3.13)

A summary of these three standard parametrizations is given in Table 1.

Occupied MOs
C = (Ci|Ca) ∈ RNb×No

Density Matrices
(Pi, Pa) ∈ RNb×Nb

sym ×RNb×Nb
sym

All MOs
C = (Ci|Ca|Ce) ∈ RNb×Nb

Constraints CTC = INo

P 2
j = Pj , Tr(Pj) = Nj ,

PiPa = 0 CTC = INb

Manifold St(No,RNb) MDM(Ni, Na;RNb) ONb

Extra variables None None virtual MOs

Gauge invariance
group O(Ni) × O(Na) {e} ONi × ONa × ONe

Table 1 – Three equivalent parametrizations of trial states for variational WFM and DFT ground state
problems. All states are parametrized as a point of a smooth matrix manifold, defined by a set of
differentiable constraints. The corresponding energy is invariant by the action of a gauge invariance
group. The extra variables in AMO parametrization do not contribute to the energy, but impacts the
geometry of the AMO manifold.

3.2 Optimization algorithms: direct minimization
Let us now discuss the two main classes of algorithms used to solve discrete GS problems starting with
direct minimization. On the one hand, direct minimization algorithms are iterative methods that consist
in following a series of steps in the search space, starting from an initial guess, so that the value of the
energy functional decreases at each step. Let us recall the formulation of some famous direct minimization
algorithms in the case of constrained minimization. They are usually formulated in cases where the search
space is the linear space Rd, endowed with the canonical scalar product 〈·|·〉. In that case, each iteration
decomposes as a three-step process:

1. from an initial point xn ∈ Rd, choose a descent direction dn along which the energy is locally
decreasing. Of the numerous algorithms available, gradient methods are the most standard. For
a given symmetric positive definite preconditioner Pn, they consist in following the direction dn
opposite to the gradient of the energy for the scalar product 〈·|P−1

n ·〉. This amounts to solve the
quasi-newton equation

Pndn = −∇xn
E (3.14)

at each iteration, where the gradient of the energy on the right-hand side is computed for the
canonical scalar product. In general, Pn is a symmetric positive definite approximation of the
Hessian of the energy at current point Hessxn

E. The two extreme examples are the steepest descent
(SD) algorithm (Pn = Id) and the Newton method (Pn = Hessxn

E), which are respectively first
and second order methods. While quadratically convergent when close to a minimum, the Newton
method needs more computational resources and is unstable when starting far from a minimum.
In that case, HessxnE is not positive definite, and dn might not be a descent direction. On the
other hand, the steepest descent always produces descent directions, but it is usually very slow to
converge.
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Among intermediate approximations, let us mention the non-linear conjugate gradient (CG) and
Broyden-Fletcher-Goldfarb-Shanno (BFGS) schemes, which construct an approximation of the in-
verse Hessian of E by combining previous directions {dn−1, dn−2, . . .} to the current direction com-
puted with (3.14). These methods usually converge much faster than the steepest descent algorithm,
while being much cheaper to implement and more stable than the Newton method (in practice, the
low-memory version of the BFGS algorithm, or L-BFGS, is preferred). More details can be found
in [NW99].

2. choose a step-size αn and make a step in the direction dn by setting xn+1 = xn+αn dn. This second
phase of the direction minimization process, called line-search, amounts to solve the one-dimensional
minimization problem

αn = min
α∈R+

fn(α) := E(xn + αdn). (3.15)

Between the fixed step line-search, where the step size is the same for all iterations, and the optimal
step method, which solves (3.15) exactly, most methods simply ask for a sufficient decrease of the
function fn. This requirement takes the form of a relaxed optimality condition, which sometimes
involve the derivatives of fn. Among the most commonly used methods, let us cite the Backtracking
[NW99], the More-Thuente [MT94] or standard Hager-Zhang method [HZ05], originally designed for
conjugate gradient.

3. given a tolerance ε > 0, test convergence by checking that the gradient of the energy is smaller in
norm than ε (first order optimality condition).

Another class of direct optimization methods is the family of Riemannian optimization algorithms,
that can be applied to minimization problems posed on a smooth manifold M. These methods can be
constructed from standard direct minimization algorithms in Rd, by slightly modifying the above three
steps as described in [absil2009optimization; EAS98]. These methods are the main subject of chapter 1,
where they are discussed with more details.

3.3 Optimization algorithms: self-consistent field
In some cases, the discrete GS problem is equivalent to a generalized eigenvalue problem, wherein the
matrix to be diagonalized depends on the ground state density matrix. It that case, the problem is
typically solved using a fixed-point algorithm known in chemistry as a self-consistent field (SCF) method.

3.3.1 Standard SCF method

In that section, let us only consider a single group of orbital by assuming that Ni = 0 or Na = 0. Let
again No be the number of occupied orbitals. In that case, a trial state is parametrized in DM formalism
by a single density matrix in the Grassmann manifold

Grass(No;RNb) :=
{
P ∈ RNb×Nb

sym , P 2 = PT = P, Tr(P ) = No
}︸ ︷︷ ︸

DM

= ONb
/(ONo × ONe)︸ ︷︷ ︸

AMO

. (3.16)

On the Grassmann, it can be shown [CLBM06] that the first order optimality conditions read as the
generalized eigenvalue problem (we still assume orthonormality of the basis set for simplicity)

F (P∗)C∗ =
(
CT∗ F (P∗)C∗

)
C∗. (3.17)

The Fock matrix F depends on the chosen approximation and C∗ is the rectangular matrix in RNb×No

such that P∗ = C∗C
T
∗ . This alternative form of the approximate ground state problem allows to introduce

a new class of solvers, that can be formulated in terms of density matrices only.
First introduced by Roothaan [Roo60] in 1960 for the RHF model, it consists in assembling the

Fock matrix for the current iterate Pn ∈ Grass(No;RNb), diagonalize it and select the No lowest energy
eigenvectors Cn+1 to form the next iterate Pn+1 = Cn+1C

T
n+1. Note that this last step assumes that the

Aufbau principle is verified. This procedure can be interpreted as a fix point method on the function

g(Pn) := Pn+1. (3.18)
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At convergence, the mean-field potentials produced by the density matrices Pn and Pn+1 become identical,
which is why the method is commonly referred to as a self-consistent field procedure. While easy to
implement (since it requires no knowledge about the geometry of MDM) the simple SCF procedure (3.18)
suffers from a lack of stability. The simple SCF map g has been shown to display chaotic behaviors
[CKL21], and generally, the convergence of the SCF algorithms is highly dependent on the gap between
occupied and virtual states, through the Jacobian of g. As a result the initial method have been refined
to showcase faster and more stable convergence, yielding a variety of SCF algorithms, which we briefly
present below. Mathematical studies of the convergence of standard Roothaan SCF can be found in
[CLB00b; Liu+14; CKL21].

3.3.2 Stabilized / accelerated SCF

Among many corrections, it is common to add the following features to the standard SCF iteration
Pn+1 = g(Pn):

1. a damping parameter α ∈ [0, 1]:

Pn+1 = Pn + α(g(Pn) − Pn). (3.19)

In that case the density matrix produced by the diagonalization of the Fock matrix is linearly mixed
with the previous iterate. We emphasize that the linear combination Pn+1 has no reason to be on the
discrete state manifold Grass(No;RNb). In order to retrieve an admissible density, it is customary
to add a last simple SCF iteration (α = 1) at the end of the procedure, since g takes its values in
the manifold Grass(No;RNb). Note however that g(P ) can be very far from P in the cases where
Grass(No;RNb) is highly curved. The convergence of the damped-SCF has been studied in [CKL21].

2. an acceleration method A which uses the previous iterates up to a certain depth

Pn+1 = g(A(Pn, · · · , Pn−depth)). (3.20)

The most common methods are the Anderson-Pulay Acceleration (APA) techniques. This terminol-
ogy, recently coined in [Chu+21], regroups various acceleration schemes into a general framework,
including the Anderson acceleration [And65], introduced in the general context of integral equations,
and the Direct Inversion of the Iterative Subspace (DIIS), introduced independently by Pulay [Pul80]
in quantum chemistry. The APA schemes are based on linear combinations of the current iterate
with the previous ones. The coefficients for the linear combination are solution of a low dimensional
least square problem, which is solved at each iteration. Mathematical studies on the convergence of
DIIS algorithms can be found in [RS11; CKL21; Chu+21].

3. a preconditioner (sometimes referred to as mixing)

Pn+1 = M−1g(Pn), (3.21)

where M approximates the Jacobian of the SCF function g. Some examples of preconditioning are
given in [Ker81; HL20].

All three add-ons can be combined in the compact formulation

Pn+1 = Pn + αM−1 (g(A(Pn, · · · , Pn−depth)) − Pn) . (3.22)

3.4 Choosing a discretization basis
Let us now briefly discuss the choice of discretization basis X in quantum chemistry. We have seen that
the standard WFM and DFT models construct an approximation of true ground-state wave-function or
density built from a basis of molecular spin-orbitals. To produce a computationally tractable model, each
spatial parts of the MOs is then expanded on a discretization basis X = (χµ)16µ6Nb

, which ultimately
impacts the quality of the approximate ground-state energy and wave-function or density.
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After discretization, the computation of approximate energies notably requires to evaluate matrix
elements that depend on the so-called kinetic and electron-repulsion integrals

ˆ
R3

∇χµ(r)∇χν(r)dr and
ˆ
R3

ˆ
R3

χµ(r′)χν(r′)χκ(r)χλ(r)
|r − r′|

drdr′ (3.23)

for all (µ, ν, κ, λ) ∈ {1, . . . , Nb}4. This imposes two constraints on X (we refer to [HJO14] for a detailed
discussion on the subject):

1. the integrals (3.23) should to be easy to evaluate;

2. the basis X should provide a relatively accurate approximation with a small number of basis func-
tions, as the number of integrals (3.23) grows as N4

b with the number of basis function Nb (in practice
refined strategies allow to reduce this complexity).

While finite elements or plane-wave methods (e.g. [Leh19c; Das+22]) have been applied to electronic
structure problems for molecules, they are typically slow to converge with respect to the basis size Nb.
For that reason they are seldom used for molecular systems, in comparison to the following approach.

3.4.1 Linear combination of atomic orbitals

The most common method, that offers a good compromise regarding the two constraints 1) and 2), is
the linear combination of atomic orbitals (LCAO) method. Consider a molecule with M nuclei, with
respective positions R1, . . . , RM and charges Z1, . . . , ZM . In LCAO, one starts by constructing for each
individual atom a basis of nucleus-centered fast-decaying functions{

χZi
µ (· −Ri) ∈ H1(R3;C), 1 6 µ 6 nZi

}
. (3.24)

The χZi
µ are usually chosen to mimic the atomic orbitals of the non-interacting-electron atom, as introduced

in Section 1.3.3, which read in spherical coordinates

χZi
µ (r, θ, φ) = fµnlζ(r)Y

µ
lm(θ, φ). (3.25)

The radial part fµnlζ : R3 → R depends on quantum parameters n and l, as well as a spread parameter
ζ > 0, and Y µlm is a standard spherical harmonic. The parameters ζ, n, l and m usually depend on µ, but
we have omitted that dependence for readability. The LCAO basis for a molecule is then obtained as the
union of all bases for the individual atoms

X =
{
χZn
µn

(· −Rn), 1 6 µn 6 nZn
, 1 6 n 6M

}
. (3.26)

For each atom, the number of atomic orbitals and the values of the parameters ζ, n, l and m are set
to accurately describe the core electronic structure of the atom, as well as covalent bonds and electronic
polarization in the molecule. As a result, only a small number of AOs per atom (typically a dozen) are
necessary to obtain a relatively accurate approximation of most quantities of interest.

There exist essentially three flavors of LCAO methods that use AOs of the form (3.25), depending on
the choice of the radial function fµnlζ . The first historically introduced variant of LCAO uses Slater type
orbitals (STO), which are defined (up to a normalization constant) by

fµ,STO
nlζ (r) = rn−1e−ζr. (3.27)

The STOs conserve the exponential decay of the original AOs (1.27) as well as their characteristic cusp
at nuclei positions. However, the integrals in (3.23) are difficult to compute for such functions, which
motivated the introduction of Gaussian-type orbitals (GTOs), that use a Gaussian exponential part

fµ,GTO
nlζ (r) = rle−ζr2

(3.28)

(where again we omitted the normalization constant). The primary advantage of GTOs lies in the fact
that the integrals in (3.23) can be computed analytically. Nevertheless, unlike STOs, these functions
provide a poor approximation of the real atomic orbitals, thereby limiting their practical utility. This
limitation can be mitigated by employing contracted GTOs, as we discuss in the following section.
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Last, numerical atomic orbitals (NAO) use numerical radial functions, typically tabulated on a fine
grid and obtained as the minimizer (or approximate minimizer) of some optimality criterion for a given
data set of atomic and molecular configurations. While STOs and GTOs have been historically preferred,
recent developments in the generation of fully numerical AOs made NAOs an increasingly popular scheme
in modern electronic structure codes [Lin+24; Leh24; Leh19a].

3.4.2 Contracted Gaussian-type bases

Contracted GTOs (CGTOs) are currently the most popular atomic basis sets for the LCAO method.
Contracted GTOs radial functions are linear combinations of Nctr individual GTOs

fµ,CGTO
nl (r) = rl

(
Nctr∑
i=1

αµi e
−ζir

2

)
(3.29)

with contracting coefficients αµi ∈ R and exponents ζi > 0. In most cases, these functions address the
deficiencies of GTOs while retaining their computational efficiency. As a result, they are commonly
employed in molecular calculations, to the extent that the term GTOs typically denotes contracted GTOs
in the chemistry literature. In turn, the gaussians used in the linear combination (3.29) are called primitive
gaussians. Contracted GTOs fall into two categories based on the structure of the contraction coefficients
matrix Mctr = [αµi ] ∈ RNctr×Nb : segmented contracted bases feature a block-diagonal matrix Mctr, whereas
general contracted bases use a full matrix Mctr.

The variety of molecular configurations and properties that need to be approximated, along with
the necessity of maintaining small basis sets, complicates the systematic development of good basis sets.
A single AO basis set often lacks global accuracy, resulting in numerous basis sets tailored to specific
calculations or systems. This can be seen for instance in the Basis Set Exchange (BSE) database, which
catalogs 689 distinct types of atomic basis sets (each applicable to several atoms) at the time of writing
of this manuscript. Recent reviews discussing the optimization of AO basis sets include the following
references [Jen13; Leh19a; Per21].

4 Electronic structure of crystalline materials
Let us now return to the topic of crystalline materials. Given their virtually infinite number of electrons,
modeling the electronic structure of solids requires introducing a specific mathematical framework.

4.1 The ground state problem for crystals
4.1.1 Mathematical description of a perfect infinite crystal

The mathematical description of crystalline materials is made easier by two physical hypotheses: first,
the crystalline material is modeled as a perfect infinite crystal in dimension d = 1, 2, 3. This physically
amounts to neglect the boundary effects and the presence of eventual defects in the solid. Conveniently,
this structure is invariant by translation of the periodic lattice R =

∑d
i=1 aiZ, where (ai)16i6d are vectors

of Rd. Given a set of M atomic positions (R1, · · · ,RM ) in the unit cell Ω =
∑d
i=1 ai[0, 1), the full atomic

configuration of the crystal is the set{
Ri + R, 1 6 i 6M, R ∈ R

}
. (4.1)

Second, the electron cloud can be described by a set of non-interacting quasi-particles, evolving under
the influence of an effective (mean-field) potential Vper, which is R-periodic by the above approximation.
Since the electrons do not interact, all the electronic properties of the crystal can be recovered by studying
the one-electron Hamiltonian

Ĥ = −1
2∆ + Vper on L2(Rd × {↑, ↓};C). (4.2)

Under suitable regularity assumptions on Vper, depending on the dimension d, the Hamiltonian Ĥ
is proven to be bounded-bellow and self-adjoint [Lew22, Theorem 7.1]. However, it can be shown that
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(a) A piece of silicon, a widely used semi-conductor,
studied in Part II. Source: Wikipedia Commons.

(b) Unit cell Ω of face-centered cubic (FCC) silicon.
The vectors ai are pictured in blue, red and green.
The two atoms in the cell are reported on the edge of
the cell by periodicity. Produced with the SeeK-path
online tool [Hin+17].

Figure 5 – Representation of silicon as a three dimensional perfect infinite crystal in face-centered cubic
(FCC) configuration.

Ĥ has no eigenvalues, which makes the direct computation of its spectrum difficult. This problem is
usually handled with Bloch theory, that allows to compute the spectral properties of periodic operators.
We outline bellow the essential aspects of the Bloch transform needed in this manuscript. A thorough
introduction to Bloch theory and the proofs of these results can be found in [RS78, Chapter XIII.16].

4.1.2 Bloch theory

For the sake of simplicity, we will neglect here the electronic spin. From a mathematical point of
view, Bloch theory consists in the block-decomposition of R-periodic operators, which are operators
Â ∈ L(L2(Rd;C)) verifying

[Â, τR] = 0 (4.3)
for all translation operators of the lattice R

τR : f ∈ L2(Rd;C) 7→ f(· − R), with R ∈ R. (4.4)

Informally, the commuting relations (4.3) imply that Â can be block-diagonalized in a basis of pseudo-
eigenvectors of the translation operators (τR)R∈R, as it would happen for a family of commuting matrices
in finite dimensions. Let

R∗ =
d∑
i=1

a∗
iZ, Ω∗ =

d∑
i=1

a∗
i [0, 1) (4.5)

be the reciprocal lattice of R and the corresponding reciprocal unit cell, where the reciprocal basis vectors
are defined by the relation 〈a∗

i |a∗
j 〉 = 2πδij , 1 6 i, j 6 d. Let us also denote the space of R-periodic

functions
L2

per(Ω;C) =
{
u ∈ L2

loc(Rd;C), such that τRu = u, ∀R ∈ R
}
. (4.6)

The pseudo-eigenvectors of the translations of the lattice R are given by the functions

ψk : r ∈ Rd 7→ uk(r)eik·r, uk ∈ L2
per(Ω;C), k ∈ Ω∗ (4.7)

usually called Bloch waves in solid state physics. Starting from the standard inverse Fourier transform
F−1, we find that all functions of u ∈ L2(Rd;C) can be decomposed as an integral of Bloch waves

u(x) =
ˆ
Rd

F(u)(q)eiq·xdq =
ˆ

Ω∗

( ∑
G∈R∗

F(u)(k + G)eiG·r

)
eik·rdk :=

ˆ
Ω∗
uk(x)ek·xdk (4.8)
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where
uk(x) =

∑
G∈R∗

F(u)(k + G)eiG·x. (4.9)

From the above informal reasoning, the action of Â on a function u ∈ L2(Rd;C) should be recovered by
its action on each individual Bloch wave uk defined by (4.9), which is the case in practice. We refer to
[Lew22, Chapter 7] or to [Lev20] for broader intuitive, pedagogical introductions to Bloch theory.

Formally, we introduce the Bloch transform as the isometry B : L2(Rd;C) −→ L2(Ω∗, L
2
per(Ω)) defined

for all u ∈ L2(Rd;C), k ∈ Ω∗ and x ∈ Rd by

B(u)(k, x) := uk(x) =
∑

G∈R∗

F(u)(k + G)eiG·x

(
B−1u•

)
(x) =

 
Ω∗
uk(x)eik·xdk.

(4.10)

Then a R-periodic operator Â is decomposed by the Bloch transform [RS78], which means that there
exists an operator-valued function Â• ∈ L∞(Ω∗,L(L2

per(Ω))) such that

B(Âu)(k) = Âkuk. (4.11)

The operators (Âk) are called the Bloch fibers of Â. Additionally, the spectrum of Â is recovered with
σ(Â) =

⋃
k∈Ω∗

σ(Âk). Using the direct integral notations (see [RS78, Section XIII.16]), the decomposition

(4.11) reads

L2(R3;C) '
 ⊕

Ω∗
L2

per(Ω)dk and BÂB−1 =
 ⊕

Ω∗
Âkdk. (4.12)

4.1.3 Band diagrams

The decomposition (4.12) can be applied to the one-body electronic Hamiltonian Ĥ as defined in (4.2). In
that case, the fibers Ĥk = (−i∇ + k)2 + Vper are unbounded self-adjoint operators acting on

L2
per(Ω × {↑, ↓};C) =

{
ψ ∈ L2

loc(Rd × {↑, ↓};C), s.t. τR(ψ) = ψ, ∀R ∈ R
}

(4.13)

with domain H2
per(Ω × {↑, ↓};C). We can write the following

Theorem 4.1 (Spectrum of Ĥ). [Lew22, Chapter 7], [RS78, Chapter XIII.16] .
Consider the one-electron Hamiltonian Ĥ with Bloch fibers Ĥk, for all k ∈ Ω∗. Suppose that

the potential Vper is a periodic potential for which Ĥ is self-adjoint with domain H2(Rd × {↑, ↓};C).
Then:

1. each Ĥk is self-ajoint with domain H2
per(Ω × {↑, ↓};C), bounded-bellow and has compact resol-

vent. Therefore each Ĥk has a purely discrete spectrum with eigenvalues accumulating at +∞
and eigenfunctions that form an orthonormal basis of L2

per(Ω × {↑, ↓});

2. for each k, let ε1,k 6 ε2,k 6 · · · be the eigenvalues of Ĥk in increasing order. Then for all
n ∈ N∗, the mapping k 7→ εn,k is Lipschitz continuous and R∗-periodic. It is analytic away
from band crossings, which are wave-vector k0 such that

∃n,m ∈ N∗ s.t εn,k0 = εm,k0 .
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3. the operator Ĥ has purely continuous spectrum and

σ(Ĥ) =
⋃
n∈N

[
min
k∈Ω∗

εn,k, max
k∈Ω∗

εn,k

]
.

From the above theorem, the spectrum of the one-electron Hamiltonian Ĥ can be computed by solving
the family of eigenvalue problems for each k-fiber

Ĥkun,k = εn,kun,k, 〈unk|umk〉L2
per(Ω;C) = δnm, ∀n,m ∈ N. (4.14)

Ω∗

σ(Ĥk)

σ(H)

ε1,k

ε2,k

ε3,k

µf −→ metal

µf −→ insulator

k

Figure 6 – Illustration of Theorem 4.1. The spectrum of Ĥ is composed of a set of bands, that are the
union of the individual eigenvalues of the Bloch fibers Ĥk. The Fermi level µf , which depends on the
number of electrons per unit cell, allows to differentiate materials. If µf lies in a gap between bands of
σ(Ĥ), the material is called an insulator or semiconductor. If µf belongs to a band, it is called a metal.

A representation of σ(Ĥ) via the map k 7→ (εn,k)n∈N, called a band diagram, is pictured in Figure 6.
From σ(Ĥ), we can retrieve information on the full crystal. As for the non-interacting-electron atom, the
independent electrons within the crystal occupy the lowest energy levels of Ĥ, “filling” them until the
number of electrons per unit cell reaches the wanted value. In the crystalline case with an infinite number
of electrons, the sum over the energies translates, through a thermodynamic limit [LBL05], as the integral
over the reciprocal unit cell Ω∗. We introduce the integrated density of states per unit cell:

∀µ ∈ R, N (µ) =
∑
n∈N

 
Ω∗

1(εn,k 6 µ)dk. (4.15)

and the integrated density of energy per unit cell

∀µ ∈ R, E(µ) =
∑
n∈N

 
Ω∗
εn,k1(εn,k 6 µ)dk. (4.16)

Let NΩ be the number of electrons per unit cell. The crystal Fermi level µf is given by the equation

N (µf ) = NΩ

2 (4.17)

where the factor 2 comes from the degeneracy of energies related to spin. It is the equivalent for solids of
the chemical potential introduced for molecular systems. From µf , the ground state energy per unit cell
reads

E∗ = E(µf ). (4.18)
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The Fermi level of crystalline solids does not necessarily fall between occupied and virtual energies, which
provides a qualitative mean to distinguish materials. As illustrated in Figure 6, if the Fermi level falls
within a gap between two bands in the spectrum of Ĥ, the material is categorized as an insulator (or a
semiconductor if the gap width is small). As in the atomic case, it is often placed in the middle of the gap
by convention. Conversely, if it lies within one of the bands in σ(Ĥ), the material is classified as a metal.

In most cases, where d = 3, the full band structure of the system, which is a four-dimensional surface,
cannot be shown. A representation such as that shown in Figure 6 is obtained by following a particular
path t ∈ [0, 1) 7→ k(t) in the reciprocal unit cell Ω∗. Since the Bloch decomposition is independent of the
reciprocal unit cell, the standard approach is to take Ω∗ = B, the first Wigner-Seitz cell of the reciprocal
lattice, known in physics as the (first) Brillouin zone. This cell inherits many symmetry properties from
the crystal lattice. In the Brillouin zone, the paths t ∈ [0, 1] 7→ k(t) ∈ B are usually built as piece-wise
linear paths joining high-symmetry k-points, that are typically the corners, edges, and faces of the Brillouin
zone. As an example, a given high-symmetry k-path and associated band diagram of face-centered cubic
silicon are pictured in Figure 7.

(a) A given high-symmetry k-path in the Brillouin
zone of face-centered cubic silicon. (b) The band structure along this path.

Figure 7 – One high-symmetry k-path of face-centered cubic crystalline silicon (left) and the corresponding
band structure (right). Red and blue arrows display the Cartesian coordinate axes and the reciprocal basis
vectors respectively. All bands are shifted so that the Fermi level appears at zero Hartree on the graph.
Source: produced with DFTK

4.2 Solving the ground state problem for crystalline materials
From the above theorem, the electronic quantities of interest for crystalline materials can be expressed in
terms of integrals (over the reciprocal unit cell) or derivatives involving a set of energy bands (n,k) 7→ εn,k.
The numerical estimation of important quantities, such as the energy per unit-cell (4.16) is therefore a
two-step discretization process:

1. first select a finite sampling of Ω∗ and a suitable numerical quadrature method to approximate the
integral over Ω∗;

2. then discretized and solve approximately the k-fiber eigenvalue problem, for all k in the sampling.

Concerning the first step, the famous Monkhorst-Pack numerical scheme [MP76] is widely used to
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select the specific k-points at which the eigenvalue problem is to be solved. It consists in a regular grid

Ω∗
MP(n1, · · · , nd) =

{
k =

d∑
i=1

ci
ni

a∗
i , ci ∈ {0, · · · , ni − 1}

}
, (4.19)

which benefits from exponential convergence rates in the number of k-points, at least in the case of
insulators [GL16]. Additionally, a number of numerical quadrature methods for integration have been
proposed including the well-known linear tetrahedron method (see, e.g., [LT72]) and the improvement due
to Blöchl et al. [BJA94], and smearing methods (see, e.g., [Mor+18; PP99; Hen01; MP89]). We refer to
[Can+20] for a mathematical study of Brillouin-zone integration methods.

When it comes to the second step, two classes of methods prevail, which we briefly describe bellow.

4.2.1 Plane-wave discretization methods

Since the eigenvalue problems (4.14) are posed on a periodic domain, Fourier discretization method are a
first natural choice. The k-fiber states un,k are indeed R-periodic, and can be expanded in the plane-wave
(PW) basis

X τ =
{
eτG(r, σ) = 1√

|Ω|
eiG·rτ(σ), G ∈ R∗

}
, τ ∈ {α, β}. (4.20)

Note that for the cases studied in this manuscript, we can neglect the electronic spin and consider the
plane-waves eG := eαG + eβG, ∀ G ∈ R∗. The Fourier coefficients of un,k[G] go to zero with |G| → ∞ so
that the basis (4.20) is usually truncated using a scalar cut-off Ec > 0

X Ec
0 =

{
eG

∣∣∣∣ G ∈ R∗,
1
2 |G|2 < Ec

}
. (4.21)

Two discretization strategies now arise:

• Uniform Galerkin discretization: the first strategy uses the same discretization basis X Ec
0 for

all eigenvalue problems. Let XEc
0 = Span X Ec

0 and ΠEc
0 be the orthogonal projector on XEc

0 for the
L2

per canonical scalar product. Given a fiber Ĥk, one solves the eigenvalue problem

ΠEc
0 ĤkΠEc

0 uEc
n,k = εEc

n,ku
Ec
n,k (4.22)

where 〈un,k|um,k〉L2
per(Ω;C) = δnm for all n,m ∈ {1, · · · , rank ΠEc

0 }.

• k-dependent Galerkin discretization: in the second strategy, the discretization basis depends
on the wave-vector k

X Ec
k =

{
eG

∣∣∣∣ G ∈ R∗,
1
2 |G + k|2 < Ec

}
. (4.23)

The discrete problem is essentially the same as above, by replacing ΠEc by ΠEc
k , the orthogonal

projector on XEc
k = Span X Ec

k .

These two strategies are pictured in Figure 8. While plane-waves are a natural choice of discretization basis
for periodic systems, they typically require a very large number of basis functions to accurately describe the
sharp variations of the wave-functions or density, such as cusp observed at the nuclear positions [Kat57].
In addition, the orthogonality constraints imposed on the orbitals un,k imply that the orbitals related the
valence electrons have to quickly oscillate near atomic sites.

These two well-known caveats of plane-wave methods are commonly dealt with by using pseudo-
potentials, that approximate the Coulomb interaction generated by the core electrons. At present day,
plane-wave methods using norm-conserving pseudo-potentials [HSC79] or the projector augmented wave
method [Blö94] are a very convenient and popular choice for the electronic structure of crystalline ma-
terials. We will not give further information on pseudo-potential, that are used as a mere tool in this
manuscript, and refer to [Dup18] for a clear introduction to the subject.
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Reciprocal lattice R∗

Reciprocal unit cell

k

Uniform basis BEc
0

k-dependent basis BEc
k

Figure 8 – An example of the uniform and k-dependent basis sets. The reciprocal lattice R∗ is a square
lattice indicated with black dots, with a reciprocal unit-cell shaded in light green. The blue disk contains
all G ∈ R∗ which belong to the uniform basis set, while the red disk contains all vectors in the k-dependent
basis. Notice that both bases contain additional G vectors that are missing from the other basis. These
points are respectively pictured in blue and red.

4.2.2 Tight-Binding approximation

An alternative approach to solving the ground state problem for crystalline materials consists in first
introducing a discretization basis X in real space before applying the Bloch decomposition, or its equiv-
alent in a discrete setting. Such methods are referred to as tight-binding (TB) approximations. They
are the analogue for periodic systems to the LCAO method, introduced for isolated molecular systems
in the previous Section 3.4. In TB, one introduces a set of Nb fast-decaying nuclei-centered functions
χ1, . . . , χNb

∈ H1(Rd;C) in the unit cell of the crystal. The full discretization basis is then obtained by
translation

X TB = {χi(· − R), R ∈ R, 1 6 i 6 Nb} (4.24)

and a tight-binding state read as an infinite sum

ψTB(x) =
Nb∑
i=1

∑
R∈R

[C(R)]iχi(x− R), C(R) ∈ CNb . (4.25)

Solving the TB approximate problem require to compute the matrix elements

[HR]jj′ = 〈χi|Ĥ|τRχj〉, and [SR]jj′ = 〈χi|τRχj〉 (4.26)

for all 1 6 j, j′ 6 Nb and R ∈ R, which is one of the subject of chapter 5.

4.2.3 Wannier functions in crystalline materials

While the Bloch decomposition allows to compute the accessible energies of the electrons of a crystal, the
wave-functions associated with the Bloch fibers, the Bloch waves, are periodic of the lattice and delocalized
over the whole crystal. Hence they do not provide an intuitive representation of the electronic localization
or bonds typically observed in the unit cell. Wannier functions, on the other hand, are localized wave-
functions that offer an alternative representation of the electronic structure of crystalline materials, derived
by a unitary transform of a set of Bloch waves. They are the analogue for crystals of the atomic orbitals
basis sets, discussed in Section 3.4, and are therefore closely related to tight-binding methods.

Let again (Ĥk)k∈Ω∗ be the Bloch fibers of the one-electron crystalline Hamiltonian with associated en-
ergy bands (εn,k)n∈N∗,k∈Ω∗ . To construct Wannier functions we start by defining an energy window of in-
terest E = (ε−, ε+) ⊂ R. For the sake of simplicity, we suppose that E contains a set I = (i1, . . . , iJ) ⊂ NJ
of J isolated bands in the sense that

1. ∀n ∈ I Ran(εn,•) ⊂ E (the n-th band is entirely contained in the energy window);
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2. inf
k∈Ω∗,n∈J,m/∈J

|εn,k − εm,k| > 0 (bands in the energy window are isolated from other bands).

An example of such a window is given by E = (−∞, µf), where µf is the Fermi level of an insulator. The
construction of Wannier functions generalizes to the case of non-isolated bands (or entangled bands) as
described in [Mar+12; DLL19]. For all k ∈ Ω∗, let PE (k) be the spectral projector of Ĥk associated to
σ(Ĥk) ∩ E . A family of Wannier functions are obtained from a basis {un,k}n∈I of Ran(PE (k)) with

∀R ∈ R wn,R(x) = τR
(
B−1(un,•)

)
(x) =

 
Ω∗
un,k(x)eik·(x−R)dk (4.27)

with B−1 the inverse Bloch transform (4.10). By orthonormality of the Bloch waves, and since B is an
isometry, one obtains that the Wannier functions {wn,R, n ∈ I, R ∈ R} are orthonormal and span the
same Hilbert space as {un,k, n ∈ I, k ∈ Ω∗}. It can be seen from (4.27) that Wannier functions are not
uniquely determined with respect to the energy window E and depend on the choice of basis of PE (k).
We can make that dependence appear by considering for all family of unitary matrices {U(k), k ∈ Ω∗},
usually called a gauge, the action

∀k ∈ Ω∗ un,k · U(k) =
∑
m∈I

un,kUm,n(k) (4.28)

and denote wn,R(U(k)) the Wannier functions constructed via (4.27) with the basis {un,k · U(k)}.

By standard Fourier duality, the localization in space of a Wannier functions wn,R is related to the
regularity of k 7→ un,k. For isolated bands, the map k 7→ PE (k) is analytic [PP13] and one can build
a map (un,•)∗ (e.g. the projection PE (k)u of any guess function u) that is analytic. The corresponding
Wannier functions decrease exponentially. In the general case however, the construction of exponentially
localized Wannier functions might be hindered by topological obstructions [Pan07].

The spectral and localization properties of exponentially localized Wannier functions makes them a
central tool of condensed matter physics, used in various applications such as energy bands interpola-
tion, tight-binding parametrizations, and low-scaling methods. This makes the numerical computation of
exponentially decreasing Wannier function an important topic.

The most standard algorithm to compute localized Wannier functions has been introduced by Marzari
and Vanderbilt in 1997 [MV97] and consists in minimizing the functional

ΩMV({U(k)}) =
∑
n∈I

(ˆ
R3

|x|2|wn,0(U(k))|2(x)dx−
∣∣∣∣ˆ

R3
x|wn,0(U(k))|2dx

∣∣∣∣2
)

(4.29)

measuring the spread of Wannier functions in the unit cell for the gauge {U(k)}. Wannier functions
obtained by the Marzari-Vanderbilt (MV) procedure are usually called maximally localized Wannier func-
tions (MLWFs). The MV algorithm is notably implemented in the software Wannier90 [Piz+20], which
is currently one of the most commonly used program for wannierization. For isolated bands, MLWFs
are known to be exponentially decreasing [Bro+07]. For entangled bands however, the MV algorithm
expresses as a two step minimization problem (with a pre-computation step called disentanglement) which
can fail to converge and showcases several local minima, making it tied to the choice of a good initial gauge.
More recent approaches, using the variational formulation for Wannier functions of [DLL19] with selected
columns of the density matrix (SCDM) initial guesses [DLY15; DL18], or approaches using another spread
functional as in [Li+23], seem to provide robust black-box methods for the computation of MLWFs.

4.2.4 The case of moiré materials

Moiré materials, which are the subject of the last chapter of this PhD thesis, have gathered the atten-
tion of condensed matter physicist in recent years due to their unique electronic properties offering rich
opportunities for both fundamental research and technological innovation. They are created by stacking
two-dimensional materials, atomically thin crystals such as graphene or transition metal dichalcogenides
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(TMDs), on top of each other with a slight rotation of the individual layers. The moiré pattern formed
by the superposition of two or more periodic lattices, as appearing in Figure 9, can lead to the emergence
of new electronic properties that are not present in the individual constituent layers.

Small changes in the twist angle between layers can lead to significant modifications in the moiré
pattern and hence in electronic properties. In addition, the interlayer interactions of moiré materials are
typically mediated by van der Waals forces, much weaker that covalent bonds, allowing for precise control
over the stacking configuration of the constituent layers. These two factors make the moiré electronic
properties highly tunable, promising for a wide range of applications.

Figure 9 – A sample of twisted-bilayer graphene (TBG). The twist angle between the two graphene layers
(respectively black and blue on the picture) creates a characteristic moiré pattern. Source: adapted from
Wikipedia Commons.

While moiré materials are usually not periodic (except for a countable set of twist angles) they can be
approximated as a crystal at mesoscopic scale, with the associated lattice known as the moiré lattice. This
allows to describe moiré materials in the framework of crystalline electronic structure theory, introduced in
the above section. However, the unit cell of the moiré lattice typically contains of the order of thousands of
atoms, which makes the direct application of atomic-scale numerical methods such as DFT or tight-binding
approximations difficult.

Another class of approach are continuous models, that treat the moiré pattern as a smooth, periodic
modulation of the electronic potential arising from the interference between the constituent layers. They
are computationally efficient, and capture the essentials physics of moiré systems. Yet, they are typically
based on heuristics, and can fail to predict the atomic-scale details and short-range interactions of the
material, such as the interlayer interaction.

4.2.5 DFTK: a Julia-based PW-DFT package

This PhD thesis resulted in several numerical contributions, almost all of them in Julia language [Bez+17].
In particular the package Density-functional ToolKit (DFTK) [HLC21] has been a central component in the
work presented in Part II of this manuscript, devoted to crystalline materials.

Actively developed since 2019, mainly by Michael Herbst and Antoine Levitt, DFTK is designed as
a prototyping platform for plane-wave DFT simulations. Remarkably the core features of the package,
allowing for the routine treatment of small to medium size systems (up to 1.000 electrons), consists in less
than 7.000 lines of codes, entirely in Julia language, and publicly available on github.

The current version of DFTK implements many features such as an interface with the exchange-
correlation functionals library libxc, norm-conserving pseudo-potentials (in Kleinman-Bylander form),
wannierization, phonon diagrams, among others. A comprehensive description of the code’s capabilities
can be found in the documentation at https://docs.dftk.org/stable/features. Most features are either
directly implemented within DFTK or are managed by Julia packages, rendering the code’s inner workings
accessible and facilitating the incorporation of novel methods.
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DFTK also offers unique functionalities like built-in support for forward automatic differentiation and ar-
bitrary precision. Additionally, the code enables the construction of arbitrary reduced models, such as the
Cohen-Bergstresser model or Gross-Pitaevskii-type problems. This flexibility makes DFTK compatible with
rigorous numerical analysis and uncertainty quantification, making it a powerful tool for interdisciplinary
research, as appearing on the list of related publications https://docs.dftk.org/stable/publications/.

Figure 10 – Four key components of the DFTK software. Source: Michael F. Herbst https://dftk.org

5 Contributions of the thesis

5.1 Results of chapter 1 - Direct minimization in quantum chemistry
Our first contribution is related to the study of direct minimization algorithms applied to the ROHF and
CASSCF models, following on from Sections 2.1, 3.1 and 3.2.

When a single group of orbitals is considered (i.e. when the internal or the active space is empty), it is
well known that the Hartree-Fock and Kohn-Sham DFT models can be formulated as optimization prob-
lems on Stiefel (molecular orbital formalism) or Grassmann (density matrix formalism) matrix manifolds,
after discretization in a finite basis set. The differential geometry quantities, appearing in the formu-
lation of Riemannian optimization algorithms on these manifolds, have analytic closed form expressions
[EAS98; AMS08]. Notably, they can be computed with simple algebraic operations (QR or singular value
decomposition) on the MO or DM matrices. As a result, these formulations led to enlightening geometric
interpretations of the HF and KS-DFT equations and to the design and implementation of robust and
efficient direct minimization algorithms. Nonetheless, due to the low computational cost, satisfactory per-
formance, and simplicity of SCF algorithms, the use of direct minimization methods for HF and KS-DFT
is rather marginal in quantum chemistry.

The situation contrasts significantly for ROHF and CASSCF, parametrized by two orthogonal sub-
spaces of orbitals. For these models, SCF algorithms often exhibit a lack of robustness with respect to
convergence parameters or initial starting points, and in some cases, they may fail to converge altogether
(the stability of SCF algorithms for ROHF is the subject of chapter 2). Direct minimization algorithms
are commonplace for CASSCF. They are derived in MO formalism by parametrizing the MO matrix as
the exponential of a rotation operator κ, with zero diagonal blocks. By expanding the energy in terms of
small variations of κ, one identifies the Riemannian gradient and Hessian on the MO manifold, in terms of
one and two-body reduced density matrices. Still, this formulation of Riemannian algorithms hides their
geometrical aspects. In ROHF, where the energy is cheaper to evaluate, SCF algorithms still prevail in
most quantum chemistry codes. Some direct minimization approaches for ROHF include geometric direct
minimization (GDM) methods [DVHG02; VHG02] and the QC-SCF implementation of [NGL21b]. Let us
also mention direct minimization applied to the Constrained Unrestricted Hartree-Fock (CUHF) method
of [TS10].

From a mathematical point of view, the MO and DM manifolds for ROHF and CASSCF are flag
manifolds, which has been recently studied in the context of optimization [YWL22], allowing to adopt a
geometric perspective, as in the case of HF and KS-DFT.
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Algorithm 〈It.〉RHF σRHF 〈It.〉UNO σUNO

RSD 115.9 112.9 32.3 12.5
RCG 31.9 11.6 15.4 3.0
R-LBFGS(dyn) 37.9 11.3 19.2 3.5
R-LBFGS(fix) 35.6 15.2 19.1 3.7
SCI(DIIS) 38.4 26.0 14.9 6.2
SCI(no DIIS) 61.5 25.1 21.6 9.9
NEO 12.2 1.8 5.1 0.5

Figure 11 – (Up) ROHF calculations on Ti2O4 in cc-pVTZ basis from a guess 1 Ha from the expected
energy for Riemannian optimization routines. (Up-left) Energy difference with respect to the converged
energy along the iterations. (Up-right) Frobenius norm of the Riemannian gradient along the iterations.
(Down) Average number of iterations (〈It.〉) and standard deviation (σ) for CASSCF calculation with each
tested algorithm, starting with two different guess orbitals corresponding to a bad and a good initial guess.
Details for all methods and initial guesses are given in chapter 1.

In chapter 1, our contribution consists in investigating the ROHF and CASSCF models as optimiza-
tion problems on a flag manifold. Through this approach, we establish the formulation for Riemannian
optimization algorithms tailored to these specific models, providing a unified framework for the direct
minimization methods found in the chemistry literature and introducing new ones.

In particular, we discuss the role of parallel transport for these algorithms. This differential geometry
toolbox offers a proper way to compare two directions (such as gradients of the energy) that belong to
different tangent spaces. In HF and KS-DFT, parallel transport on the Grassmann manifold is trivial.
On the other hand, this is not the case on the flag manifold, a fact that that has apparently not been
identified in the theoretical chemistry literature and may contribute to some observed instabilities.

The rest of our contribution is devoted to numerical experiments. We test the viability of first-order
optimization methods for ROHF and CASSCF. We have implemented these methods in a Julia code,
which is interfaced with PySCF and CFOUR to evaluate the respective ROHF and CASSCF energies and
gradients. For ROHF we tested our methods on Ti2O4 in its D2h geometry, which is employed as a
template for addressing SCF convergence issues4 in the Amsterdam Density Functional (ADF) quantum-
chemistry package [TV+01]. For CASSCF we used a subgroup of the benchmark set used in [MKW16] and
[NGL21a]. In all cases, Riemannian optimization methods show robust convergence properties, and do so
without requiring the user to finely tune the parameters that control the optimization. Even in our naive
implementation, they demonstrate that they can be competitive with other traditional implementations
in terms of number of iterations, and thus overall computational cost (Figure 11).

It would be a natural progression of our study to explore alternative methods of retraction and trans-
port, distinct from the exponential retraction and parallel transport used in chapter 1. These alternative
approaches have the potential to significantly enhance the performance of Riemannian optimization algo-

4See https://www.scm.com/doc/ADF/Examples/SCF_Ti2O4.html
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rithms. Some examples of other retractions and transports on flag manifolds are given for Riemannian
conjugate gradient in the recent paper [ZS24].

5.2 Results of chapter 2 - SCF algorithms for ROHF
Our second contribution is related to the study of SCF algorithms in Restricted Open-shell Hartree-Fock
(ROHF), following on from Sections 2.1.2, 2.1.5 and 3.3.

Self-consistent field algorithms for the Hartree-Fock problem in the restricted closed-shell and unre-
stricted open-shell settings are well understood. Several flavors of SCF algorithms have been proposed for
RHF and UHF in the past 70 years, the most common being the Roothaan’s algorithm [Roo51] endowed
with level shifting [SH73] or DIIS acceleration methods [Pul80; Pul82; HP86; RS11]. In [KSC02], the
authors propose a robust and efficient method to solve the RHF and UHF problems using their EDIIS
algorithm for the first iterations, and switching to DIIS to accelerate convergence when the iterates are
close enough to the solution. This method always work for UHF and most of the time for RHF. The SCF
algorithms for RHF and UHF have also been studied from a mathematical viewpoint [Can+03; CKL21;
Chu+21].

As mentioned above, the situation is radically different for the ROHF model, where existing SCF
algorithms fail to converge in many cases, notably for radicals and molecular systems containing transition
metals.

In chapter 2, we investigate SCF algorithms for ROHF. We start by writing the ROHF problem in DM
and OMO formalisms, as the minimization of an energy functional on the flag manifolds MOMO(Nd, Ns;RNb)
(3.12) and MDM(Nd, Ns;RNb) (1.2.10). Here Nd and Ns denote the respective numbers of doubly-occupied
and singly-occupied orbitals. We then discuss the fact that, in contrast to RHF and UHF, the first-order
optimality conditions for ROHF (the ROHF equations) cannot be naturally formulated as a nonlinear
eigenvalue problem.

Standard SCF (parameter dependent). As a result, standard SCF algorithms for ROHF are based
on the construction and diagonalization of a non-physical effective Hamiltonian HA,B , depending on six
user-defined parameters A = (Add, Ass, Avv) ∈ R3 and B = (Bdd, Bss, Bvv) ∈ R3 characterizing the SCF
algorithm. Notably, the effective Hamiltonian HA,B does not always satisfy the Aufbau principle, which
is a key ansatz for the stability and convergence of SCF algorithms.

New SCF (parameter free). Following this observation, we propose a new SCF scheme that better
respects the structure of the ROHF equations, and that does not rely on the Aufbau principle. We show
that optimal points for this new SCF scheme are optimal for the ROHF problem. From an initial point
(P (k)
d , P

(k)
s ), the next iterate is chosen as a minimizer of a linear functional on MDM(Nd, Ns;RNb)

(P (k+1)
d , P

(k+1)
s ) ∈ argmin

{
Tr(F (k)

d Pd + F
(k)
s Ps), (Pd, Ps) ∈ MDM(Nd, Ns;RNb)

}
(5.1)

which can be evaluated by a few iterations of a direct minimization procedure on MDM(Nd, Ns;RNb), as
described in chapter 1. The formula (5.1) is obtained by analogy to the formulation of the standard SCF
iteration for RHF as a minimization problem on the Grassmann manifold Grass(No;RNb) (3.16). Using
this new SCF iteration, free of the Aufbau ansatz, we also extend the relaxed-constrained ODA algorithm
[CB00] to the ROHF setting.

To assess their performance, we tested our new algorithms against state-of-the-art SCF algorithms
for some challenging chemical systems, such as organic ligands chelating - or simply interacting with -
transition metals. A sample of our results is given in Table 2.

Performances of standard DIIS. Numerical experiments show that standard SCF methods, even
endowed with DIIS acceleration, fail to converge for most choices of coefficients A and B in the literature.
In general, the standard methods are very sensitive to the choice of initial guess and DIIS parameters.
Starting from a good initial guess (very close to a minimum) does not always provide better convergence
results.
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We observe however that the standard SCF method with Guest and Saunders coefficients converges
for almost all our test cases, when applying DIIS acceleration from the first iteration. This is at odds
with the default implementation of most quantum chemistry codes, in which DIIS only activates when
the iterations reach the attraction basin of a local minimum. To our knowledge, the fact that DIIS can
stabilize SCF iterations far from a local minimum remains unexplained.

Performance of our new methods. As for the EDIIS + DIIS method in the closed shell case, nu-
merical experiments show that applying a few iterations of ODA, followed by a new SCF endowed with
DIIS acceleration provides a robust black-box method that converges in all our test cases.

Standard SCF-DIIS Pyridine–Fe2+ Pyridine–Fe3+ Porphyrin model–Fe2+

Guest and Saunders X(100) X(187)
Roothaan X(212) X(139) X(52)

Euler X(68) X(72)
McWeeny X(271) X(187)

Other coefficients
ODA + new SCF-DIIS X(60) X(144) X(28)

Table 2 – Convergence results of standard SCF methods (designated by their names in the literature) and
of our new black-box method for some of our test cases, starting from an extended Hückel guess in 6-31G
basis set. The results for standard SCF are from our own implementation. The details of implementation
are given in chapter 2. The cell contains the number of iterations to reach microHartree convergence. The
cell is barred when the method do not converge.

In their current state, our new methods are computationally more demanding than traditional SCF
algorithms (when the latter converge), as they require to approximately solve the minimization problem
(5.1) at each iteration. Yet they are a promising step toward a black-box algorithm for open-shell systems.
A natural follow up to our study is the realization of a high-throughput calculations to assess the validity
of our methods on a large set of test cases. One should also do a complete analysis of the local minima
respectively found with standard SCF and our methods, as we only compared their respective energies
in our analysis. Lastly, as discussed in chapter 2, the fixed depth of the DIIS history sometimes hinder
convergence by keeping information that should be discarded. Hence, it would be interesting to test on
challenging cases the use of the adaptative depth DIIS procedure, as introduced in [Chu+21], together
with our black-box routine.

5.3 Results of chapter 3 - General criteria for the optimization of LCAO bases
Our third contribution is related to the mathematical formalization and to the choice of optimality criteria
for the optimization of atomic basis sets in quantum chemistry, following on from Section 3.4.

The LCAO approach is a standard discretization strategy in electronic structure calculations: for a
large number of cases, it offers a computationally efficient discretization method, while requiring a small
number of basis functions. To produce good approximations, AO basis sets are typically the result of an
optimization process. However, in view of the vast number of molecular configurations and quantities to
approximate, choosing an appropriate reference data-set for the optimization is a difficult task.

This yields many different approaches. Classical methods are restricted to gaussian-type orbitals basis
sets, thus reducing the dimensionality of the problem by optimizing a reduced set of contracting coefficients
and/or exponents. Among them, the “energy-based” basis sets are the most common. These include the
standard Pople [BPH80] and Dunning [Dun89], as well as the more recent Karlsruhe [WA05] basis sets,
which are optimized with respect to Hartree-Fock and/or post-Hartree Fock energies, mostly for single
atoms. Let us also cite Jensen [Jen01] polarization consistent GTO basis sets which involve reference
energies for polyatomic systems.

Another class of methods which we might call “state-based”, more scarcely represented in the literature,
directly involve reference wave-functions or density matrices. An example is given by [SPAS95; SPAS96]
where GTOs are fitted to reference states obtained with plane-wave calculations. The recent development
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of fully numerical atomic orbitals, which are free of many constraints imposed on GTOs, produced yet
another class of methods.

The diverse range of methods employed for basis set optimization raises methodological questions.
While “energy-based” approaches are typically simpler to implement, certain physical quantities are not
directly correlated with energy. This raises the question of whether “state-based” methods should be
developed, or if these approaches are somehow equivalent. Moreover, it remains unclear whether it is
sufficient to optimize basis sets using atomic or diatomic configurations, as commonly practiced, or if one
needs to include general polyatomic systems in the optimization data-set. Furthermore, LCAO basis sets
inherently produce significant linear dependencies that must be addressed during optimization. Recent
efforts aimed at curing the poor conditioning of AO basis sets include [Leh19b; Leh24].

These considerations point toward the need to investigate AO optimization from a general mathemat-
ical perspective. Mathematical studies proving convergence rates or proposing systematic enrichment of
AO basis sets are so far quite limited. The approximability of solutions to electronic structure problems
by Gaussian functions was studied in [Kut94], and later on in [SY17; Sha20]. An a priori error estimate on
the approximation of Slater-type functions by Hermite and even-tempered Gaussian functions was derived
in [BCS14]. A construction of Gaussian bases combined with wavelets was proposed on a one-dimensional
toy model in [Pha17].
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Figure 12 – Energy and densities error with basis functions optimized on I = [1.5, 5]. The conventions
are the following: the L2-OBS and H1-OBS basis are obtained for the JA criterion, for A corresponding
to the L2 and H1 norm. The E-OBS basis is obtained for JE . HBS is the non-optimized GTO basis. The
parameter a models the inter-atomic distance of our toy diatomic molecule.

In chapter 3, we introduce an abstract mathematical framework for the optimization of AO basis sets
based on the choices of

1. a set of admissible atomic configurations Ω;

2. a probability measure P on Ω;

3. a set of admissible AO basis sets B;

4. a criterion j(χ, ω) quantifying the error between the exact values of the quantities of interest when
the system has atomic configuration ω ∈ Ω – for the continuous model under consideration – and
the ones obtained after discretization in the basis set χ ∈ B.

In this formalism, we investigate possible choices of Ω, P, B and criterion j. In particular, we define an
“energy-based” and a “state-based” criterion, denoted JE and JA (with the operator A characterizing
a choice of norm) and experiment with these criteria on a one-dimensional toy problem mimicking the
optimization of GTO basis sets for diatomic configurations. The exact formulations for JE and JA are
given in chapter 3.
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As seen in Figure 12, the optimized basis sets for the respective criteria provide approximations that
are one to two orders of magnitude closer to the reference solutions than standard basis sets, for the same
number of basis functions. Remarkably on this 1D toy model, the energy and state based optimization
procedures seem to provide similar results, in terms of approximation of the ground-state energy and
ground-state 1-RDM. We also observed that this improvement of the approximation holds for a small
number of reference points close to the minimum of the dissociation curve.

In future work, we plan to generalize our study to small real systems. Reference solutions can be
obtained for example using finite element approximations, as available in the Helfem software [Leh19c] for
diatomic molecules, or in DFT-FE [Das+22] for larger systems. Some preliminary tests using Helfem yield
encouraging results. Another study should be devoted to the bad conditioning of AO basis sets.

5.4 Results of chapter 4 - Modified operator for the computation of band
diagrams

Our fourth contribution is related to the correction of discretization errors that arise when using truncated
Fourier basis sets in the computation of band diagrams. It follows on from Section 4.

From the second point of Theorem 4.1, the exact energy bands k 7→ εn,k of a crystalline materials are
R∗-periodic and analytic away from band crossings. Those are two properties that are crucial for the con-
vergence rate of quadrature methods used to compute integrals on Ω∗ [Can+20]. However, as observed in
Figure 4.2, classical uniform (4.21) and k-dependent (4.23) plane-wave discretization strategies sometimes
produce approximate energy bands that are discontinuous or aperiodic. Some corrective approaches have
been proposed in the literature, for example the ones respectively implemented in Abinit [Abi] or Qbox
[Qbo] software, all based on a specific modification of the kinetic operator of the Bloch fibers Ĥk.

(a) Approximate and exact energy bands (b) Corresponding R-periodic potential V ∈ L∞
per(Ω)

Figure 13 – Lowest energy bands for a simple 1-D example with effective potential V ∈ L∞
per(Ω) as shown

on the left. The effective potential satisfies the regularity property V ∈ H1−ε
per (Ω) for every ε > 0.

In chapter 4, we describe a systematic modified operator approach that encompasses existing meth-
ods and which allows to produce periodic bands with arbitrary targeted regularity. Given an initial
k-dependent Fourier basis X Ec

k with cut-off energy Ec > 0, our approach introduces the modified Bloch
fiber

ĤG ,Ec
k := Ec G

(
| − i∇ + k|√

2Ec

)
+ Vper (5.2)

35



where G : R → R is a one-dimensional “blow-up” function defined as

G (x) =

f2(x) for |x| ∈ [0, 1
2 ] ∪ [1,∞),

hm(|x|) for |x| ∈
( 1

2 , 1
) (5.3)

and where hm : [ 1
2 , 1) −→ R, hm(|x|) →

|x|→1
+∞ is chosen to obtain a targeted regularity of the energy

bands depending on m ∈ N. Possible expressions for hm are given in chapter 4. Under suitable regularity
assumptions on Vper, we derive an error estimate (Theorem 4.5.1) for the approximate, modified energy
bands k 7→ εG ,Ec

n,k . We then prove (Theorem 4.5.2) that the approximate bands k 7→ εG ,Ec
n,k are of class

Cm away from band crossings, and that they are Lipschitz continuous at crossings if m > 1 and only
continuous otherwise.

The proof for the first theorem is an application of the Courant-Fischer min-max principle, which
allows to obtain a first upper bound for the error introduced by the modified operator approach. The
theorem is then proved by writing this upper bound as the sum of terms that either cancel by properties
of G , or that can be bounded in a controlled manner.

The second proof starts by showing the continuity of the modified approximate bands with respect to
k ∈ Ω∗. The difficulty of the proof comes from the fact that the size of the discretization basis X Ec

k , hence
the size of the matrix ΠEc

k ĤG ,Ec
k ΠEc

k representing ĤG ,Ec
k in the truncated basis X Ec

k , varies with k. For
that reason we could not use the standard result from which a continuously parametrized family of fixed-
size matrices have continuously parametrized eigenvalues. As detailed in chapter 4, we get around the
problem by using a Schur complement to isolate the dimensions added to ΠEc

k ĤG ,Ec
k ΠEc

k by an infinitesimal
variation of k, and by using the Hurwitz theorem from complex analysis. We prove higher regularity of
the bands using a finite difference approximation.
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(c) Second derivative

Figure 14 – Comparison of the first and second derivatives of the first band of face-centered cubic sili-
con on a small portion of the band-structure (detailed in chapter 4) for the k-dependent and modified
discretization schemes.

Numerical experiments involving a toy model in 1D, graphene in 2D, and face-centered cubic silicon in
3D (shown in Figure 14) then validate our theoretical results and showcase the efficiency of the operator
modification approach. The PW-DFT computations have been performed with DFTK (see Section 4.2.5),
where we implemented the modified operator approach. The details of implementation can be found in
chapter 4. Our modified operator approach also proves effective in regularizing the energy with geometry
optimization.

Band diagrams are usually the first step in the evaluation of electronic properties and quantities of
interest for materials, such as elastic constants, Wannier functions, Berry curvature, etc. A study of the
impact of our modified operator approach on the convergence of these quantities with respect to real-space
or Brillouin zone samplings would be an interesting topic of investigation. Preliminary results involving
finite difference approximations of the energy with respect to the lattice parameter point toward practical
applications.
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5.5 Results of chapter 5 - Contributions to the Julia electronic structure eco-
system

Lastly, we describe two numerical contributions related to the simulation of twisted-bilayer graphene
(TBG), following on from Section 4.

5.5.1 Developpment of a Julia package for the simulation of 2D materials

Our first contribution consisted in establishing the groundwork for a Julia code, TwistedBilayerGraphene,
designed as a user-friendly playground for the simulation of twisted-bilayer graphene (TBG). As a starting
point, we focused on two continuous models for the electronic structure of TBG. First, the Bistritzer-
MacDonald (BM) model [BM11], a standard effective model introduced in 2011. Second, the more recent
model introduced in [CGG23], that we call “CGG”, derived from an approximate Kohn-Sham Hamiltonian
for TBG.

In the first part of chapter 5, we compute the expressions for the respective BM and CGG models in a
plane-wave discretization basis, and provide implementation details, to be shared as a public documenta-
tion. Our package, built as an overlay to the DFTK package, allows in its current state to compute the BM
and CGG band diagrams in a few simple calls, with tunable geometry and convergence parameters (see
Figure 15). It also includes automated tests to ensure the code’s resilience over time, enabling adaptation
to future updates of Julia and DFTK.

Figure 15 – (Left) BM and (right) CGG band diagrams of TBG, as introduced in [CGG23]. The precise
definition of the k-path in horizontal axis and of the geometry used for these band diagrams are given in
chapter 5.

Future work will be devoted to the implementation of additional features in our package. For example,
the recent introduction of phonon mode calculations in DFTK will allow the integration of phonon or
electron-phonon models for TBG in our code.

5.5.2 First steps toward large tight-binding simulation of multilayer graphene with com-
pressed Wannier functions

Our last contribution focuses on the evaluation of matrix elements for large-scale tight-binding calculations
on multilayer graphene. Applying a general compression procedure introduced in [Bak+18], we manage
to expand the Wannier functions corresponding to the two lowest valence bands of graphene on a basis of
symmetry-adapted gaussian-type orbitals (SAGTOs), for which tight-binding elements can be computed
analytically.

The obtained compressed Wannier functions depend on 155 parameters only and approximate the
reference Wannier functions with an error of 12% in H1 norm and 5% in L2 norm. Notably, our set of
GTOs is larger than the one used in the original paper [Bak+18], the latter requiring more than twice as
many parameters to achieve the same precision.

Unfortunately, we lacked the time to complete this study. In particular, the SAGTO basis produced
by our naive implementation is ill-conditioned, preventing further investigation into the use of larger and
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potentially more accurate basis sets. In forthcoming research, we should work on correcting the bad
conditioning inherent to our implementation. We also should assess the time saved through the use of
analytical integrals as opposed to standard quadrature methods and measure the effect of compression on
the accuracy of tight-binding matrix element calculations.
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Chapter 1

Geometric Optimization of
Restricted-Open and Complete Active

Space Self-Consistent Field Wavefunction

This chapter resulted in the preprint [LVp1]:

Laurent Vidal, Tommaso Nottoli, Filippo Lipparini, and Eric Cancès. “Geometric optimization of
Restricted-Open and Complete Active Space Self-Consistent Field wavefunctions”. Submitted

Abstract We explore Riemannian optimization methods for Restricted-Open-shell Hartree-Fock
(ROHF) and Complete Active Space Self-Consistent Field (CASSCF) methods. After showing that ROHF
and CASSCF can be reformulated as optimization problems on so-called flag manifolds, we review Rie-
mannian optimization basics and their application to these specific problems. We compare these methods
to traditional ones and find robust convergence properties without fine-tuning of numerical parameters.
Our study suggests Riemannian optimization as a valuable addition to orbital optimization for ROHF and
CASSCF, warranting further investigation.
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1.1 Introduction
Orbital optimization is one of the most common task performed in quantum chemistry calculations.
It is the numerical problem associated with Hartree-Fock (HF) [Har57] and Kohn-Sham Density Func-
tional Theory (KS DFT) [KS65] as well as a component of Complete Active Space Self-Consistent Field
(CASSCF) calculations [Wer87; She87; Roo87] and is further encountered in orbital optimized post-
Hartree Fock methods [SSI87; She+98]. The various algorithms that have been propoposed to tackle
this problem can be grouped into two families: fixed point methods, such as Roothaan’s SCF algorithm
[Roo51; Roo60], and direct optimization methods, such as quadratically convergent optimization strate-
gies [Bac81; Bac82]. For HF and DFT, the former family is the most commonly employed, due to the
existence of very robust implementation that exploit convergence acceleration techniques such as Pulay’s
Direct Inversion in the Iterative Subspace [Pul80; Pul82; HP85] (DIIS), constraint relaxation methods
such as the Optimal Damping Algorithm [CLB00a; CB00; Can01] (ODA), or more sophisticated related
techniques such as E-DIIS [KSC02] or A-DIIS [HY10]. Nevertheless, direct optimization techniques have
received quite some attention due to their robustness and due to the possibility of implementing them
avoiding dense linear algebra operations (e.g., diagonalization of the Fock matrix).

Direct minimization techniques for Restricted Open-Shell Hartree-Fock (ROHF) calculations are rela-
tively scarce compared to Self-Consistent Field (SCF) methods, which predominantly feature in quantum
chemistry software. Among direct minimization approaches, noteworthy methods include Geometric Di-
rect Minimization (GDM) techniques [DVHG02] and the QC-SCF algorithm [NGL21b]. Additionally, the
Second-Order SCF (SOSCF) algorithm [CSG97; Nee00] and the DIIS-GDM method [DVHG02; VHG02],
which amalgamate aspects of both SCF and direct minimization strategies, merit mention. Moreover, the
CUHF method, as introduced by Tsuchimochi and Scuseria [TS10], can be adapted for ROHF computa-
tions through the utilization of a direct minimization procedure designed for Unrestricted Hartree-Fock
(UHF) calculations.

A difficulty associated with the formulation and implementation of direct minimization techniques
is due to the fact that the quantity that needs to be optimized, such as the molecular orbitals (MO)
coefficients, or the density matrix, needs to satisfy nonlinear constraints. In other words, the minimization
set is not a vector space, but rather a differentiable manifold.

It is well-known that after discretization in a finite basis set, HF and KS models can be formulated as
optimization problems on Stiefel (molecular orbital formalism) or Grassmann (density matrix formalism)
manifolds [EAS98]. These formulations lead to enlightening geometric interpretations of the Hartree-Fock
and Kohn-Sham equations, and to the design and convergence analysis [CLB00b; Lev12; CKL21] of robust
and efficient direct minimization algorithms. The purpose of this article is to show that Restricted Open-
Shell Hartree-Fock (ROHF) and Complete Active Space Self-Consistent Field (CASSCF) methods can
be reformulated as optimization problems on so-called flag manifolds [YWL22]. This allows one to shed
new light on the ROHF and CASSCF equations, and the direct minimization algorithms used to solve
these problems. While the work presented in this article does not lead to game-changing improvements in
orbital optimization, we hope that it will provide the community with a set of rigorous tools that can be
used for further developments, as the ones recently proposed by some of us for the extrapolation of the
SCF density matrix in the context of ab-initio molecular dynamics simulations [Pes+23].

This article is organized as follows. In Section 1.2, we briefly recall the high-spin ROHF and CASSCF
orbital optimization problem in terms of both density-matrix (DM) and molecular orbitals (MO) formula-
tions and provide a simple geometric interpretation of the ROHF and CASSCF equations. In Section 1.3,
we review the basic concepts of geometric optimization (Riemannian gradient and Hessian, vector trans-
port, affine connection, geodesic, retraction). In Section 1.4, we discuss more specifically geometric opti-
mization for ROHF and CASSCF, providing also the tools to translate any algorithm formulated in the
MO formalism into the DM formalism and viceversa. We then provide geometric interpretations of exist-
ing direct minimization algorithms for ROHF and CASSCF, and propose new ones. We also introduce a
direct optimization method circumventing the use of virtual orbitals, which is useful for ROHF in large
basis sets (i.e. planewaves, finite elements, or wavelets). Numerical results are reported in Section 2.4.
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1.2 ROHF and CASSCF
In this section, we briefly recapitulate the orbital optimization problem for ROHF and CASSCF and
introduce the manifolds associated with the MO and DM formalisms. ROHF and CASSCF methods
indeed share common features. They both involve

• a set of NI doubly-occupied molecular orbitals, often called internal orbitals;

• a set of NA partially-occupied molecular orbitals, often called active orbitals,

the latter being orthogonal to the former. Consider a molecular system with N electrons discretized in a
basis set of size Nb. We denote the electronic Hamiltonian by

ĤN = −1
2

N∑
i=1

∇2
ri

+
N∑
i=1

Vnuc(ri) +
∑

1≤i<j≤N

1
|ri − rj |

. (1.2.1)

Notation To avoid possible misunderstandings, we clarify here the notation that will be adopted
throughout the paper. Let us assume that we have discretized the problem using an orthonormal set of
atomic orbitals (AO) {χµ}Nb

µ=1, obtained, for instance, by Löwdin orthogonalization of a usual Gaussian-
type or Slater-type basis. This implies, for the overlap matrix:

Sµν = 〈χµ|χν〉 = δµν .

We use greek letters µ, ν, . . . to label AOs. Molecular orbitals {φp}Nb
p=1 are written as linear combinations

of atomic orbitals

φp =
Nb∑
µ=1

Cµpχµ

where the coefficient matrix C ∈ RNb×Nb is, due to our choice of orthogonal AOs, an orthogonal matrix,
i.e., CCT = CTC = INb . We divide the molecular orbitals into three sets: NI internal orbitals, that are
always doubly occupied, NA active orbitals, that are singly occupied in ROHF and have varying occupation
for CASSCF, and NE external orbitals, that are always empty. We use i, j, . . . to label internal orbitals,
u, v, . . . to label active orbitals, a, b, . . . to label external orbitals, and p, q, . . . for generic ones. We call ΠI

and ΠA the orthogonal projectors on the space spanned by internal and active orbitals, respectively, in
the AO basis, i.e.,

ΠI
µν =

NI∑
i=1

CµiCνi, ΠA
µν =

NI +NA∑
u=NI +1

CµuCνu (1.2.2)

P ∈ RNb×Nb denotes the one-body reduced density matrix (1-RDM) in the AO basis, while γ ∈ RNb×Nb

denotes the one-body reduced density matrix in the MO basis. We call mα and mβ the number of α and
β active electrons, respectively, so that the total number of electrons is given by N = 2NI +mα +mβ . In
high-spin ROHF, mα = NA and mβ = 0. Using these conventions, the high-spin ROHF density matrix is
given by

PROHF = 2ΠI + ΠA (1.2.3)
where we note that the α and β one-body spin density matrices (1-SDM) are given by

PROHF,α = ΠI + ΠA, PROHF,β = ΠI (1.2.4)

For CASSCF, the MO 1-RDM γΨCAS has a block structure, with

γΨCAS

ij = 2δij , γΨCAS

uv = 〈ΨCAS|Êuv|ΨCAS〉, γΨCAS

ab = 0, (1.2.5)

where
Êpq = â†

pαâqα + â†
pβ âqβ

is the spin-traced singlet excitation operator, and all other blocks vanishing. In the AO basis, the matrix
PΨCAS = CγΨCAS

CT thus satisfies the following relation:

2ΠI 6 PΨCAS
6 2ΠI + ΠA. (1.2.6)
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To define 1-SDM for CASSCF, we need to introduce the active spin densities γΨCAS,σ
uv , for σ = α, β which

are defined as follows:
γΨCAS,σ
ij = δij , γΨCAS,σ

uv = 〈ΨCAS|â†
uσâvσ|ΨCAS〉, (1.2.7)

with all the other blocks (i.e., internal-active and all blocks with at least one external index) vanishing.
The AO spin densities are then given by

PΨCAS,σ = CγCAS,σCT (1.2.8)

and it holds that
ΠI 6 PΨCAS,σ 6 ΠI + ΠA. (1.2.9)

Direct optimization methods for ROHF and CASSCF can be divided into two groups, depending on
the degrees of freedom used for performing the optimization. In the MO formalism, the main variable is
the coefficient matrix C. As mentioned previously, it is an orthonormal matrix, which can be seen as a
point of the orthogonal group O(Nb). In the DM formulation, the main variable is the pair of orthogonal
projectors (ΠI,ΠA), which can be identified with a point of the set

MDM :=
{

(ΠI,ΠA) ∈ RNb×Nb
sym × RNb×Nb

sym s.t. (ΠI)2 = ΠI, (ΠA)2 = ΠA

Tr(ΠI) = NI , Tr(ΠA) = NA, and ΠIΠA = 0
}
. (1.2.10)

We will see later that the above set has a nice geometrical structure: it can be canonically identified with
the flag manifold MFlag := Flag(NI, NI +NA;RNb). The passage between MO and DM parameterization
is done by the map

ζ : O(Nb) 3 C 7→
(
ΠI,ΠA) ∈ MMO with ΠI,ΠA given by Eq. 1.2.2. (1.2.11)

The dimension of the MO manifold O(Nb) is Nb(Nb−1)
2 (i.e. the number of degrees of freedom in an or-

thogonal matrix), while the dimension of the DM manifold MDM can be shown to beNINA+NINE+NANE .
The discrepancy comes from the fact that rotations that mix orbitals of the same class do not affect the en-
ergy. In mathematical terms, this can be formulated as follows: the DM manifold MDM can be identified
with the quotient of the MO manifold O(Nb) by the group

O(NI) ×O(NA) ×O(NE).

This identification has very practical consequences on the design of direct optimization algorithms, as will
be seen in Section 1.4.

The geometric structure described above corresponds to a well known fact in quantum chemistry. In
direct optimization implementations, changes in the orbitals are parameterized via a rotation matrix

U = eκ, (1.2.12)

where κ ∈ RNb×Nb is a skew-symmetric matrix with the following block structure:

κ =

 0 κIA κIE
−κTIA 0 κAE
−κTIE −κTAE 0

 (1.2.13)

The vanishing diagonal blocks, that would mix orbitals belonging to the same class, are the practical
translation of the quotient process mentioned above. We further note that the map κ 7→ Ceκ, with κ as
in Eq. 1.2.13 provides a non-redundant local parametrization of the quotient manifold

O(Nb)/(O(NI) ×O(NA) ×O(NE)).

In standard quantum chemistry direct optimization implementations, a sequence of MO coefficients
{C(k)}Nit

k=0 is generated starting from an initial guess C(0) such that the sequence of energies {E(k)}Nit

k=0 is
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Figure 1.1 – Conjugate gradient algorithm in Rn (left). Riemannian conjugate gradient (RCG) algorithm
on a Riemannian manifold M (right).

non increasing and hopefully converges to the ground state energy. The passage from C(k) to C(k+1) is
obtained by

C(k+1) = C(k)eκ
(k)

(1.2.14)

where κ(k) is the result of some optimization procedure (e.g., steepest descent, or Levenberg-Marquardt
second order optimization). Eq. 1.2.14 amounts to changing the center of the local parameterization of
the quotient manifold. For the steepest descent and Newton optimization methods, the calculation of
κ(k) relies only on information relative to the point C(k), i.e., it makes no use of the history. Employing
an optimization method that does, e.g., non-linear conjugate gradient (CG) or quasi-Newton methods,
comes with a complication. Let us consider non-linear CG as an example. In the (flat) vector space
Rn, the CG descent direction at a given iterate is computed by linearly combining the gradient at the
current iterate with the descent direct at the previous direction, see Fig. 1.1 (left) and Eq. 1.3.3. On a
Riemannian manifold, the gradient and descent direction at a given iterate belong to the tangent space
to the manifold at this particular iterate, which changes from iteration to iteration. Therefore, it is not
possible to linearly combine tangent vectors at different points, as required by CG, in an obvious way.
The operation of correctly transferring a vector quantity from the tangent space at a given point of the
manifold to the tangent space at another point of the manifold is called transport, see Fig 1.1 (right) and
Eq. 1.3.4.

For RHF and RKS, this problem is not apparent because the optimization takes place in a Grassmann
manifold, for which the parallel transport map is trivial in the right parameterization (see Eq. 1.4.4). This
is not the case for the flag manifolds on which ROHF and CASSCF optimization problems are set (see
Eq. 1.4.8).

Given (ΠI,ΠA) ∈ MDM, there exists a unique (up to an irrelevant global phase) normalized ROHF
wavefunction ΦROHF

(ΠI,ΠA) with maximal spin polarization S = Sz = NA

2 associated with (ΠI,ΠA): it is the
Slater determinant whose spin-1-RDM in the AO basis (χµ) is given by Eq. 1.2.4. The ROHF energy
functional

EROHF(ΠI,ΠA) := 〈ΦROHF
(ΠI,ΠA)|ĤN |ΦROHF

(ΠI,ΠA)〉 (1.2.15)

is therefore a well-defined function of (ΠI,ΠA), and in fact a quadratic function in ΠI and ΠA. From
a geometrical point of view, the ROHF problem is therefore a smooth optimization problem on a flag
manifold, for which the energy is quadratic in the density-matrix formalism.

CASSCF can be also seen as an optimization problem on a flag manifold. In the spin-collinear approx-
imation, the corresponding CASSCF energy functional can be written as

ECAS(ΠI,ΠA) = min
Ψ∈WCAS

ΠI,ΠA

〈Ψ|ĤN |Ψ〉,
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with
WCAS

ΠI,ΠA :=
{

Ψ s.t. ‖Ψ‖ = 1, ΠI ≤ PΨ,σ ≤ ΠI + ΠA, tr
(
PΨ,σ) = NI +mσ, σ = α, β

}
.

Recall that for A,B ∈ RNb×Nb
sym , A ≤ B means that XTAX ≤ XTBX for all X ∈ RNb .

A very appealing feature of quotient manifolds is that if closed form expressions for parallel transport
and geodesics on M are known, then closed form expressions for parallel transports on M/G can be
derived from the ones on M. The manifold O(Nb) is in fact a Lie group. For this reason, closed form
expressions for parallel transport and geodesics on O(Nb) can be constructed from the exponential map.

1.3 Optimization on Riemannian manifolds
Riemannian optimization (i.e. optimization on manifold endowed with a Riemannian metric) is a major
field of computational mathematics with many applications in various areas of science and technology.
Several Riemannian optimization libraries are available, in which the most common Riemannian opti-
mization methods are implemented. One of the advantages of using an optimization library is that this
allows one to test and compare many different optimization methods with limited development effort. For
optimization in the flat space Rn, the user of an optimization library is just asked to provide the code
returning the value of the function and its gradient at an input point x ∈ Rn (and possibly also, for some
methods, a preconditioner and/or the Hessian at x). For optimization on a Riemannian manifold M, the
user is asked to provide four pieces of codes returning respectively:

1. the value of the function and its Riemannian gradient at an input point x ∈ M, (and possibly also,
for some methods, a preconditioner and/or the Riemannian Hessian at x);

2. the value of gx(px, qx) ∈ R, where gx is the Riemannian metric, for an input point x ∈ M and two
tangent vectors px, qx ∈ TxM at point x;

3. the value of Rx(px) ∈ M, where R is the chosen retraction, for an input point x ∈ M and a tangent
vector px ∈ TxM at point x;

4. the value of Tpxqx ∈ TRx(px)M, where T is the chosen transport, for an input point x ∈ M and two
tangent vectors px, qx ∈ TxM at point x.

Let us first recall the role of g, R and T in Riemannian optimization algorithms, and illustrate these
concepts on the simple example of optimization on the orthogonal group O(Nb). It is well-known that the
tangent space to O(Nb) at some C ∈ O(Nb) is given by

TCO(Nb) = {CA, A ∈ RNb×Nb
antisym},

where A ∈ RNb×Nb
antisym is the vector space of Nb×Nb real antisymmetric matrix. The Frobenius inner product

〈M,N〉F := tr
(
MTN

)
=

Nb∑
µ,ν=1

MµνNµν

on RNb×Nb induces a Riemannian metric on O(Nb) defined by

gC(CA,CA′) = tr
(
ATA′) = − tr(AA′) for all C ∈ O(Nb) and CA,CA′ ∈ TCO(Nb).

Consider a smooth function E : RNb×Nb → R. The gradient of E at some point C ∈ RNb×Nb is the unique
matrix ∇E(C) ∈ RNb×Nb such that

E(C + δC) = E(C) + 〈∇E(C), δC〉F + o(δC).

If C ∈ O(Nb), the Riemannian gradient of E at C is the matrix ∇gE(C) ∈ TCO(Nb) obtained by
orthogonally projecting ∇E(C) on TCO(Nb) for the Frobenius inner product. Its expression is given by

∇gE(C) = 1
2C
(
CT∇E(C) − ∇E(C)TC

)
.
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Figure 1.2 – Riemannian steepest descent (RSD) algorithm.

A retraction R on a manifold M is a map R : TM → M such that for all x ∈ M the restriction
Rx : TxM → M of R to TxM satisfies for px ∈ TxM

Rx(px) = x+ px + o(px). (1.3.1)

Among other things (see below), retractions are used to map straight lines, or more generally paths,
drawn on the vector space TxM onto paths drawn on the curved manifold M. As a matter of example,
the iterates of the fixed-step gradient (also called steepest descent) algorithm are defined by

d(k) = −∇gE(x(k)), x(k+1) = Rx(k)(td(k)), (fixed-step steepest descent) (1.3.2)

for a chosen fixed step t > 0. In words, starting from a point x(k) ∈ M, the descent direction d(k) is chosen
equal to the opposite of the gradient, which is the steepest descent direction for infinitesimal length steps,
a step td(k) is made in this direction, and finally, the vector td(k) ∈ Tx(k)M is mapped back to a point of
the manifold thanks to the retraction (see Fig. 1.2).

It follows from (1.3.1) that in the limit of small step lengths, we have

x(k+1) = Rx(k)(td(k)) = x(k) + td(k) + o(t)

where the remainder term o(t) can be interpreted as a correction due to the curvature of the manifold M.
Among all possible retractions on a Riemannian manifold M, one is canonical: it is the one defined

from the geodesics, called the exponential map, and denoted by Exp. In the case of O(Nb), the exponential
map has a simple closed expression and is related to the usual exponential of matrices:

ExpC(CA) = CeA, A ∈ RNb×Nb
antisym (exponential map on O(Nb)).

In Riemannian optimization, vector transports are used in particular to combine the descent directions
of previous iterates. Let us further elaborate on this point, that was qualitatively discussed in Section 1.2.
In the standard conjugate gradient algorithm in Rn, the descent direction d(k) at iterate x(k) is a linear
combination of −∇E(x(k)) and d(k−1), the previous descent direction:∣∣∣∣ d(k) = −g(k) + βkd

(k−1),
x(k+1) = x(k) + tkd

(k),
(nonlinear CG algorithm in Rn) (1.3.3)

with g(k) = ∇E(x(k)) and either

βFR
k := ‖g(k)‖2

‖g(k−1)‖2 (Fletcher-Reeves),

βPR
k := g(k)T (g(k) − g(k−1))

‖g(k−1)‖2 (Polak-Ribière),

βHS
k := g(k)T (g(k) − g(k−1))

(g(k) − g(k−1))T d(k) (Hestenes-Stiefel).
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The step length tk ∈ R is obtained by a line search technique such as Armijo, Wolfe, or Hager-Zhang
[HZ06] linesearch.

This idea cannot be directly used in optimization on manifolds, because −∇E(x(k)) and d(k−1) be-
long to different vector spaces, namely Tx(k)M and Tx(k−1)M respectively. Before being combined with
−∇E(x(k)) to form the new descent direction d(k), the vector d(k−1) must be transported from Tx(k−1)M
to Tx(k)M, using a transport map T . A transport map takes as input two vectors px, qx of the tangent
space TxM at point x, and returns a vector Tpxqx of the tangent space at point Rx(px) (compatibility
condition with the retraction R). The map (px, qx) 7→ Tpxqx is linear in the variable qx, and satisfies the
consistency relation T0qx = qx. We thus have∣∣∣∣ d(k) = −g(k) + βkTtk−1d(k−1)d(k−1),

x(k+1) = Rx(k)(tkd(k)), (Riemannian CG algorithm) (1.3.4)

with either

βRFR
k := gx(k)(g(k), g(k))

gx(k−1)(g(k−1), g(k−1))
(Riemannian Fletcher-Reeves),

βRPR
k :=

gx(k)(g(k), g(k) − Ttk−1d(k−1)(g(k−1)))
gx(k)(g(k−1), g(k−1))

(Riemannian Polak-Ribière),

βRHS
k :=

gx(k)(g(k), g(k) − Ttk−1d(k−1)(g(k−1)))
gx(k)(g(k), Ttk−1d(k−1)(d(k−1))) − gx(k−1)(g(k−1), d(k−1))

(Riemannian Hestenes-Stiefel).

Together with x(k) = Rx(k−1)(tk−1d
(k−1)), the fact that Tpx

qx ∈ TRx(px)M (comptabilitly with the retrac-
tion) ensures that Ttk−1d(k−1)d

(k−1) belongs to Tx(k)M.
Among all transports compatible with the exponential map Exp associated with the metric g, one is

canonical: it is the parallel transport associated with the Levi-Civita connection of the metric g. For the
example of O(Nb), this parallel transport has an extremely simple form

TCA(CB) = CeAB (parallel transport on O(Nb)).

1.4 Optimization on Grassmann and flag manifolds
In RHF and RKS models, the state of the system is described by a point of the Grassmann manifold

Gr(N,Nb) ∼=
{
P ∈ RNb×Nb

sym s.t. P 2 = P, tr(P ) = N
}︸ ︷︷ ︸

DM formalism

∼= O(Nb)/(O(N) ×O(Nb −N))︸ ︷︷ ︸
MO formalism

.

In the DM formalism, the Grassmann manifold is parameterized by the matrix P of the orthogonal
projector on the vector space spanned by the doubly-occupied MO. In the MO formalism, it is represented
by an orthogonal matrix C ∈ O(Nb), the first N columns of C corresponding to the N doubly-occupied
orbitals, and the last Nb −N ones to the virtual orbitals. The gauge invariance in the MO formulation is
taken into account by quotienting O(Nb) by the group O(N)×O(Nb−N) (rotations of occupied / virtual
orbitals).

Likewise, in the ROHF model and the outer CASSCF minimization problem, the state is represented
by a point of the flag manifold

Flag(NI , NI +NA,Nb) ∼= MDM ∼= O(Nb)/(O(NI) ×O(NA) ×O(NE))︸ ︷︷ ︸
MO formalism

.

In both cases, the MO formalism involves the quotient of the orthogonal group O(Nb) by a closed
subgroup (O(N) ×O(Nb−N) for RHF/RKS, O(N) ×O(NI) ×O(NA) ×O(NE) for ROHF/CASSCF). As
a consequence, the closed form expressions for the canonical retraction and parallel transport on O(Nb) can
be translated into closed form expressions for canonical retraction and parallel transport on the quotient
manifold [Ye2022; EAS98; AMS08; Bou23], leading to the following formulae:
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• RHF/RKS setting:

tangent space at C ∼=
{
Cκ, κ =

(
0 κOV

−κTOV 0

)}
, (1.4.1)

metric: gC(Cκ,Cκ′) = tr
(
κTκ′) = 2 tr

(
κTOV κ

′
OV

)
, (1.4.2)

exponential map (canonical retraction): RC(Cκ) = Ceκ, (1.4.3)
parallel transport: TCκ(Cκ′) = Ceκκ′, (1.4.4)

• ROHF/CASSCF setting:

tangent space at C ∼=

Cκ, κ =

 0 κIA κIE
−κTIA 0 κAE
−κTIE −κTAE 0

 , (1.4.5)

metric: gC(Cκ,Cκ′) = tr
(
κTκ′) (1.4.6)

exponential map (canonical retraction): RC(Cκ) = Ceκ, (1.4.7)
parallel transport: TCκ(Cκ′) = Ceκe−φκ(κ′), (1.4.8)

where φκ : K → K is the linear operator on the vector space

K =

κ =

 0 κIA κIE
−κTIA 0 κAE
−κTIE −κTAE 0


defined by

φκ(κ′) = 1
2ProjK ([κ, κ′])

= 1
2

 0 −κIE [κ′
AE ]T + κ′

IEκ
T
AE κIAκ

′
AE − κ′

IAκAE
κ′
AEκ

T
IE − κAE [κ′

IE ]T 0 −κTIAκ′
IE + [κ′

IA]TκIE
−[κ′

AE ]TκTIA + κTAE [κ′
IA]T [κ′

IE ]TκIA − κTIEκ
′
IA 0

 ,

and

e−φκ =
+∞∑
n=0

(−1)n

n! (φκ ◦ · · · ◦ φκ)︸ ︷︷ ︸
n times

. (1.4.9)

In computational codes, it is convenient to represent a tangent vector Cκ by the block κOV ∈ RN×(Nb−N)

for RHS/RKS, and the blocks (κIA, κIE , κAE) ∈ RNI ×NA ×RNI ×NERNA×NE for ROHF/CASSCF. It fol-
lows from Eq. 1.4.4, that in this representation the parallel transport for RHF/RKS is the identity
operator. This is not the case for ROHF/CASSCF where the transport of the block matrix κ′ is done
by the map e−φκ(κ′), which transforms and mixes the IA/IE/AE blocks of κ′. Let us note however that
in the special case when the transported vector Cκ′ is collinear to the vector Cκ along which it is trans-
ported, then the transport formula Eq. 1.4.8 dramatically simplifies. Indeed, we then have [κ, κ′] = 0,
and therefore e−φκ(κ′) = κ′. This occurs for the Riemannian conjugate gradient method (see Eq. 1.3.4),
but not for quasi-Newton methods such as BFGS.

1.5 Numerical Results
In this section, we analyze the performance of Riemannian optimization algorithms for solving the ROHF
and CASSCF minimization problems for a few selected test cases. Let us first provide some implementation
details.

General implementation. We focus specifically on Riemannian steepest descent (RSD), nonlinear
conjugate gradient (RCG) and low-memory Broyden-Fletcher-Goldfarb-Shanno (R-LBFGS) methods, all
endowed with preconditioning. We refer to [AMS08; Bou23] for general introductions to Riemannian
optimization methods. Our code is structured as follows: first, we implemented the RSD, RCG, and
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R-LBFGS optimization routines in the MO formalism within a Julia [Bez+17] package which is then
interfaced with PySCF [Sun+20] for ROHF and CFOUR [Mat+20] for CASSCF calculations. These
software handle the operations specific to the ROHF and CASSCF models, including the generation of
AO basis sets and initial guess MOs, the computation of electronic integrals, and the evaluation of energies
and Frobenius gradients.

In our Julia package, we use for all methods the exponential retraction (1.4.7) and parallel transport
(1.4.8) as outlined in the previous section. For parallel transport, the exponential operator is computed by
truncating the series (1.4.9) so that the Frobenius norm of the last term falls below numerical precision.

Our implementation of RCG is based on Algorithm 1 in Boumal et al. [BA15] with Polak-Ribière
coefficient βRPR as above. For R-LBFGS, we implemented Algorithm 2 in Huang et al [HGA15]. For
CASSCF, we use the inverse diagonal of the Hessian as preconditioner. In the case of ROHF, we tested two
different preconditioners. The first one is the modified inverse diagonal Hessian as discussed in [NGL21b].
The other is detailed in Appendix. Our results are presented for the second choice of preconditioner that
showcased the best performance for our test case.

All methods use Hager-Zhang [HZ06] linesearch as implemented in the LineSearches.jl [MR18] Julia
package. Computations are considered to have reached convergence when the Frobenius norm of the
Riemannian gradient reaches 10−5. Comprehensive implementation details are available in our publicly
accessible GitHub repository.1

Details specific to the R-LBFGS implementation. At each iteration, the R-LBFGS method con-
structs an approximation B of the inverse Hessian using a certain number m of vectors stored in memory
from previous iterations, through an iterative procedure [HGA15]. In addition to preconditioning, it is
important to note that the performance of R-LBFGS is influenced by the selection of the maximum depth
mmax, the initial guess B0 for the approximate inverse Hessian in the iterative process and the choice
of restart strategies, which determines the iterations at which the history is reset. For both ROHF and
CASSCF, we define B0 = γ Id with γ as in [HGA15]. If P is the preconditioner, the preconditioned version
of R-LBFGS is obtained by replacing B0 with γ̂P , with γ̂ as in [DSH18].

We experimented two restart strategies which depend on the preconditioning. For the first one, called
dynamic R-LBFGS, the diagonal Hessian used for preconditioning is updated at each iteration. The history
is reset whenever the direction obtained from the R-LBFGS quasi-newton system is not a descent direction.
For the second method called fixed R-LBFGS, we use the same preconditioner P = diag(Hess(0))−1, corre-
sponding to the inverse diagonal Hessian for the guess orbitals, at each iteration until the inverse diagonal
Hessian at current point, diag(Hess(k))−1, deviates too much from P . When this happens, the history
is reset, and the procedure is reinitialized with P = diag(Hess(k))−1. When using the preconditioner
described in appendix for ROHF, we applied the dynamic strategy.

1.5.1 ROHF
For ROHF we tested the three aforementioned Riemannian optimization methods on Ti2O4 in its D2h
geometry, using Dunning’s cc-pVTZ basis set [Dun89; KDH92]. This system is employed as a template
for addressing SCF convergence issues2 in the Amsterdam Density Functional (ADF) quantum-chemistry
package [TV+01]. In order to compare the performance of Riemannian algorithms in different convergence
regimes, calculations were started from both a core initial guess (Fig. 1.3) and a guess closer to a minimum
(Fig. 1.4). The second guess is obtained by a standard SCF+DIIS method for ROHF, with Guest and
Saunders coefficients [PD14], stopped when the Frobenius norm of the gradient reaches 10−1.

In both cases, all three methods provide stable convergence toward a local minimum of the energy. In
the optimal scenario, a finely tuned SCF+DIIS method outperforms the Riemannian optimization methods
we have tested. However, the performance and stability of SCF routines for ROHF are notoriously sensitive
to the choice of method and acceleration parameters, as illustrated in Fig. 1.5. On the other hand, the
direct minimization methods described in this paper have the advantage of offering robust convergence,
which is a valuable feature in terms of user’s time and effort.

We were unfortunately not able to make a direct comparison to the GDM algorithm [DVHG02] due to
our lack of access to the code or to the fine details of the implementation. Nevertheless, a simple-minded

1https://github.com/LaurentVidal95/ROHFToolkit
2See https://www.scm.com/doc/ADF/Examples/SCF_Ti2O4.html
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Figure 1.3 – Calculations from core initial guess. On the left, energy difference with respect to the
converged energy along the iterations. On the right, Frobenius norm of the Riemannian gradient along
the iterations. Only the first 500 iterations of RSD are shown on the graph for readability.
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Figure 1.4 – Calculations from a better initial guess, 1 Eh from the expected energy. On the left, energy
difference with respect to the converged energy along the iterations. On the right, Frobenius norm of the
Riemannian gradient along the iterations.

test performed with the free trial version of Q-Chem [Sha+15] using default parameters showed that GDM
and GDM+DIIS exhibit similar performances to our RCG implementation on Ti2O4.

An important point that needs to be discussed here is what minimum the various algorithms converged
to. Our proof-of-concept implementation does not enforce point-group symmetry, so our calculations were
performed in the C1 group.

Our calculations converged to two different minima, one at −1996.191285 Eh, which was systemati-
cally obtained when starting from the core guess, and one at −1996.179398 Eh, obtained when starting
from the better guess. We also looked at the lowest triplets for each Irrep enforcing symmetry using a
quadratically convergent ROHF implementation [NGL21b], and we determined that the lowest triplet is
the B2u state at −1996.142005 Eh. The stability analysis of such solution reveals however that a lower
energy, symmetry-broken solution exists. We therefore conclude that the two solutions found with our
Riemannian optimization algorithms are two lower-energy symmetry-broken solutions. Whether a lower-
energy, symmetry broken-solution is desirable or not depends on the aims of the study, and ultimately
on the user; however, we note that our algorithms can be generalized to enforce point group symmetry,
which we plan to do in the future.
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Figure 1.5 – Comparison of standard SCF+DIIS methods for ROHF as listed in [PD14], for Ti2O4 in
cc-pVTZ basis set, starting from our good initial guess about 1 Hartree away from the expected energy.
The vertical axis shows the Frobenius norm of the Riemannian gradient along the iterations. Only two
methods yield convergence.

1.5.2 CASSCF
The CASSCF method has been tested by running calculations on a subgroup of the benchmark set used
in [MKW16] and [NGL21a] using Pople’s 6-31G* basis set [HDP72]. Convergence properties of direct
minimization algorithms were compared against two well-established CASSCF optimization algorithms
namely Super CI (SCI) [Roo80; Sie+81; MRR90; Kol+19; Ang+02] and the norm-extended optimization
(NEO) [JJ84; JA86], the latter one being a genuine second-order algorithm. All computations were carried
out using two different choices, to simulate, respectively, a troublesome scenario where the calculation
starts relatively far away from the converged result, and an ideal starting point that should be close to the
final minimum. For the former scenario, we use canonical restricted Hartree-Fock (RHF) orbitals, while
as a good starting point we exploit unrestricted natural orbitals (UNO) [PH88; TP20]

We report in Tab. 1.1 for each algorithm the average number of iterations required to converge
CASSCF. As expected, the values related to the RHF guess are systematically higher than the ones
related to the UNO guess. Moreover, we notice that the numbers related to the RHF guess show a high
variability as indicated by the large standard deviation, thus being strongly system dependent. The av-
erage number of iterations for all direct minimization methods with the exception of RSD is comparable
with and in some cases outperforms the ones of SCI. We conclude this section by looking more in detail

Algorithm 〈It.〉RHF σRHF 〈It.〉UNO σUNO

RSD 115.9 112.9 32.3 12.5
RCG 31.9 11.6 15.4 3.0
R-LBFGS(dyn) 37.9 11.3 19.2 3.5
R-LBFGS(fix) 35.6 15.2 19.1 3.7
SCI(DIIS) 38.4 26.0 14.9 6.2
SCI(no DIIS) 61.5 25.1 21.6 9.9
NEO 12.2 1.8 5.1 0.5

Table 1.1 – Average number of iterations (〈It.〉) and standard deviation (σ) for each tested algorithm
starting with two different guess orbitals, namely restricted Hartree-Fock (RHF) and unrestricted natural
orbitals (UNO).

at one example, namely, pyridine using a standard CAS(6,6) wavefunction. In Fig. 1.6, we compare the
convergence behavior of the R-LBFGS as implemented in the present study with a naive implementa-
tion that simply translates the gradient from previous points, without parallel transport. In both cases,
we start from canonical orbitals. We note that while both implementations get stuck for a while on a
plateau, the R-LBFGS overcomes it in a few iterations and then converges smoothly. On the contrary, the
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Figure 1.6 – On the left, energy difference with respect to the converged energy along the iterations for a
proper R-LBFGS implementation that makes use of the parallel transport (green curve) and a more basic
one (orange curve). On the right, Frobenius norm of the gradient along the iterations.

naive LBFGS implementation exhibits worse convergence, with very small and even positive slope steps at
the beginning of the optimization. This demonstrates the importance of properly accounting for parallel
transport.

Another important point concerns the actual solution obtained. When starting from a poor guess
such as the one given by canonical orbitals, without any kind of manual selection for the active space,
the optimizer may get stuck in local minima that are ultimately related by orbitals swapping between the
inactive and active domains. Using once again pyridine as a test case, we observe that all the algorithms
converged to the same local minimum (-246.766857 Eh) with the exception of SCI that converged to a
higher minimum (-246.756489 Eh). These two minima are characterized by different converged active
orbitals. This difference can be assessed simply by visual inspection or by checking the singular values
of the difference between the active part of the one-body density matrix in the AO basis for the two
calculations. If the converged active orbitals were (almost) the same, we would observe (almost) vanishing
singular values. On the contrary, as depicted in Fig. 1.7, two orbitals are completely different between the
two results.
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Figure 1.7 – First ten singular values of the difference matrix between the active AO-based one-body
density matrices stemming from two calculations that reached different local minima.

We also note that by manually tuning the DIIS parameters, we managed to achieve convergence to the
lower-energy solution using SCI. Again, this underlines the robustness of the Riemannian optimization
algorithms, which is valuable in terms of user time and effort.
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1.6 Conclusions and perspectives
In this contribution, we have explored the use of Riemannian optimization methods on the flag manifold
to optimize restricted-open and complete active space self-consistent field wavefunctions. After discussing
the geometry of the problem, we have reviewed the general aspects of Riemannian optimization and its
application to the aforementioned chemical problem. We have then compared various algorithms to tra-
ditional ones. The Riemannian optimization methods illustrated in this work all show robust convergence
properties, and do so without requiring the user to finely tune the parameters that control the optimiza-
tion. Even in the naive implementation presented here, they demonstrate that they can be competitive
with other traditional implementations in terms of number of iterations, and thus overall computational
cost. Nevertheless, this is just a proof-of-concept study, for which several further developments are re-
quired. First, the overall underwhelming performance of the Riemannian Quasi-Newton L-BFGS method
for CASSCF, which is expected to outperform conjugate gradient, as observed for ROHF when start-
ing from a good guess (see Fig. 1.4), can be explained by the basic preconditioner and initialization of
the inverse Hessian we use. Finding better preconditioners and inverse Hessian approximations is not a
straightforward task, and requires further attention. We also have not investigated optimal parameters,
including exploring different line-search and restarting strategies, which would require to run extensive
numerical tests, but that can greatly improve the overall performance of the methods.

In conclusion, we believe that Riemannian optimization is a valuable addition to the SCF optimization
toolbox for ROHF and CASSCF, and that further exploration of the use of such techniques is worthy of
attention.
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Appendix: A variant of the diagonal Hessian preconditioner for
ROHF
Let C ∈ O(Nb) and κ ∈ K such that Cκ ∈ TCO(Nb). The ROHF Hessian applied to Cκ is given by

LC(Cκ) = C

 0 X Y
−XT 0 Z
−Y T −ZT 0

 (1.6.1)

where the matrices X ∈ RNI ×NA , Y ∈ RNI ×NE and Z ∈ RNA×NE are defined by

X = 2(κIA(FI − FA)AA − (FI − FA)IIκIA) + κIE(2FI − FA)EA + (FI − 2FA)IEκTAE
+(2J(λ1) −K(λ1))IA + J(λ2)IA

Y = κIA(4FI − 2FA)AE + 4(κIE(FI)EE − (FI)IIκIE) − 2((FI)IA + (FA)IA)κAE
+4(2J(λ1) −K(λ1))IE + 2(2J(λ2) −K(λ2))IE

Z = κTIA(2FI − FA)IE − 2(FI + FA)AIκIE + 4(κAE(FA)EE − (FA)AAκAE)
+2(2J(λ1) −K(λ1))AE + 2(2J(λ2) −K(λ2))AE .

(1.6.2)

In the above expression, we adopted the following conventions: the operators J and K are the standard
exchange and Coulomb operators, FI and FA are the internal and active Fock matrices, defined for all
ΠI = CIC

T
I and ΠA = CAC

T
A by

FI = h+ 2J(ΠI) + J(ΠA) −K(ΠI) − 1
2K(ΠA)

FA = 1
2(h+ 2J(ΠI) + J(ΠA) −K(ΠI) −K(ΠA))
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and the matrices λ1, λ2 ∈ RNb×Nb
sym are given by

λ1 =

 0 κIA κIE
κTIA 0 0
κTIE 0 0

 and λ2 =

 0 −κIA 0
−κTIA 0 κAE

0 κTAE 0

 . (1.6.3)

Each block X, Y and Z can be decomposed as the sum of two terms, the first one, denoted by (X̃, Ỹ , Z̃),
being simple to compute in terms of internal and active Fock operators, and the second one, denoted by
(ΩX ,ΩY ,ΩZ), being more costly to compute:

X = 2(κIA(FI − FA)AA − (FI − FA)IIκIA) + ΩX := X̃ + ΩX
Y = 4(κIE(FI)EE − (FI)IIκIE) + ΩY := Ỹ + ΩY
Z = 4(κAE(FA)EE − (FA)AAκAE) + ΩZ := Z̃ + ΩZ

. (1.6.4)

In our implementation, we define a preconditioned direction Cκprec as a solution to the linear system

L̃C(Cκprec) = Cκ. (1.6.5)

involving the approximate Hessian

L̃C(Cκ) = C

 0 X̃ Ỹ

−X̃T 0 Z̃

−Ỹ T −Z̃T 0

 . (1.6.6)

The advantage of formulation (1.6.4) is that the lowest eigenvalue of L̃C can be estimated with respect to
FI and FA, which allows to apply a shift when L̃ is not positive definite (which is expected when starting
far from a minimum). In addition, the system (1.6.5) reads as three Sylvester matrix equations, that can
be solved using standard LAPACK optimized routines.

54



Chapter 2

Self-consistent Field algorithms in
Restricted Open-Shell Hartree-Fock

This chapter resulted in the preprint [LVp2]:

Robert Benda, Eric Cancès, Emmanuel Giner, and Laurent Vidal. “Self-consistent field algorithms in
Restricted Open-Shell Hatree-Fock”. Submitted

Abstract In this chapter, we propose a simple geometrical derivation of the restricted open-shell
Hartree-Fock (ROHF) equations in the density matrix and molecular orbitals formalism. We then in-
troduce a new, parameter-free, basic fixed-point method to solve these equations, that, in contrast with
existing self-consistent field (SCF) schemes, is not based on the introduction of a non-physical, parameter-
dependent, composite Hamiltonian. We also extend the Optimal Damping Algorithm to the ROHF
framework. We finally present numerical results on challenging systems (complexes with transition met-
als) demonstrating the performance of the new algorithms we propose.
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2.1 Introduction

The ultimate goal of computational chemistry is to propose reliable theoretical tools to describe the chem-
ical properties of any molecular system. The initial step of such a task is always the accurate description
of the ground state electronic structure of the system, for which there exist essentially two flavors of ap-
proaches: the wave function theory (WFT) and density functional theory (DFT). Although DFT remains
certainly the most used theoretical tool for closed-shell systems because of its advantageous ratio between
the computational cost and the accuracy of the results, the usual semi-local approximations used in DFT
are known to suffer from several issues when open-shell systems need to be considered. For instance,
the self-interaction error in open-shell systems is responsible for the over delocalization of electrons in
transition metal complexes and has impacts on several chemical properties such as the electronic param-
agnetic spectrum, ligand-field excitations or spin-gaps [Rui+98; SMS02; ARS+05; KKN07; Ata+06]. One
major issue in DFT is that there is no systematic way to improve the results, which leads to an inflation
of different flavors of approximated functionals tailored for a specific class of systems and/or properties
[VT20]. The situation of WFT is somehow opposite as there exists many ways of systematically refine
the results starting from a mean-field description although it comes to the price of a rapidly growing
computational cost. Nevertheless, as remarkable progresses have been obtained in the reduction of the
computational cost of correlated WFT methods (see for instance Ref [MW20] and references therein),
the latter appear more and more as actual computational tools for the treatment of open-shell systems.
Even though WFT-based correlated methods are in active development, they all start with a mean-field
Hartree Fock (HF) calculation for which there are many convergence problems in the context of open-shell
systems. Therefore, improving the reliability of the HF algorithms becomes an important point in order
to popularize the correlated WFT methods.

There exists several avatars of the Hartree-Fock method. The most commonly used are the restricted
and unrestricted Hartree-Fock methods (RHF and UHF, respectively), which differ by the constraint im-
posed in the RHF method to have an unique set of spatial orbitals for both up and down spins. For
open-shell systems, the constraint of having the same spatial orbitals for the two spins has an important
consequence: while the ROHF Slater determinant is an eigenfunction of the Ŝ2 operator, the UHF Slater
determinant suffers from spin contamination [TS10]. The latter has a big impact in the post-HF calcula-
tions as the correlated wave function built upon a spin-contaminated Slater determinant needs to restore
the correct spin symmetry using high-order particle-hole excitations [Boo+13; TS10; DVHG02]. More-
over, the correlated methods using unrestricted orbitals necessary deal with several types of two-electron
integrals corresponding to the interaction between electrons of different spins, which also induces several
complications in the code structure and memory.

From the mathematical point of view, Hartree-Fock methods give rise to constrained optimization
problems, whose first-order optimality conditions are the Hartree-Fock equations. As usual in optimization
theory, numerical solutions can be obtained either by solving the Hartree-Fock equations by a fixed-point
(self-consistent field - SCF) algorithm, or by a direct minimization of the Hartree-Fock energy functional
[DVHG02; VHG02; CKL21].

Many algorithms have been developed for the RHF and UHF frameworks in the past 70 years.
Roothaan’s [Roo51], level-shifting [SH73], and DIIS algorithms [Pul80; Pul82; HP86; RS11; Chu+21]
belong to the class of SCF algorithms. Direct minimization approaches are adopted in e.g. Bacskay’s
quadradic convergent algorithm [Bac81], trust-region methods [Thø+04] and geometric direct minimiza-
tion (GDM) methods [DVHG02; VHG02]. Let us also mention the second-order SCF (SOSCF) algorithm
[CSG97; Nee00], and the DIIS-GDM [DVHG02; VHG02], which combine features from both SCF and
direct minimization methods.The optimal damping algorithm (ODA) [CB00] and the EDIIS algorithm
[KSC02] solve a relaxed version of the Hartree-Fock optimization problem, whose solutions always coin-
cide with those of the original Hartree-Fock problem for UHF, as well as for the less popular General
Hartree-Fock method (GHF) in which each spin-orbital is allowed to have both a spin-up and a spin-down
component. For RHF, ODA and EDIIS most often converge to solutions to the RHF problem, but may
occasionally converge to one-body density matrices with fractional occupation numbers, which do not
correspond to Hartree-Fock states. A robust and efficient method to solve the RHF and UHF problems
(which always works for UHF and most of the time for RHF) is to use EDIIS in the first iterations and
switch to DIIS to accelerate convergence when the iterates are close enough to the solution [KSC02].
All the above algorithms are relatively well-understood from a mathematical point of view [Can+03].
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Roughly speaking, computing RHF and UHF ground states for small and medium-size chemical systems
is no longer an issue.

The situation is radically different for ROHF, where existing SCF algorithms fail to converge in many
cases, notably for radicals and molecular systems containing transition metals.

In this article, we investigate the SCF algorithms for ROHF. We focus on maximum spin states in
order to simplify the presentation, but our approach is valid for any spin state (see Remark 2.2.1). In
Section 2.2, we recall the mathematical structure of the ROHF ground state problem in both the density
matrix and molecular orbital formalisms. In particular, we point out that the ROHF minimization space
has the geometry of a flag manifold, a structure that has been described in the mathematical literature
(see e.g. [Lee13; YWL22]). Using this formalism, we derive from a geometric perspective the first-order
optimality conditions for the ROHF problem, the ROHF equations.

In contrast with the RHF and UHF settings, the ROHF equations cannot be naturally formulated as
a nonlinear eigenvalue problem. As a consequence, the simple SCF Roothaan scheme for RHF, “assemble
the Fock matrix for the current iterate, diagonalize it, build the next iterate using the Aufbau principle,
that is by selecting the lowest energy orbitals”, cannot be straightforwardly extended to the ROHF setting.
All the existing SCF algorithms we are aware of twist the ROHF equations using coupling operators to
transform them into a nonlinear eigenvalue problem. They are based on the construction of a composite,
non-physical, effective Hamiltonian obtained by linear combinations of sub-blocks of the Fock matrices Fd
and Fs respectively associated to the doubly and singly ROHF orbitals (also refereed to as internal and
active orbitals). These combinations involve six real coefficients Att, and Btt with t equal to d (doubly
occupied), s (singly occupied), or v (virtual), the choice of which characterizes the SCF scheme. For
instance, these six coefficients are all equal to 1/2 in the Guest and Saunders algorithm [GS74], but
are different and depend on the spin state in the Canonical-I and Canonical-II algorithms introduced by
Plakhutin and Davidson [PD14]. From the physical point of view, the choice of Att and Btt coefficients
essentially tries to maintain the Aufbau principle in order to avoid numerical instabilities of the SCF
algorithm induced by swapping of the singly occupied orbital with doubly occupied or virtual orbitals.
It is important to stress that, because of the mathematical restriction imposed by the ROHF Slater
determinant, the Aufbau principle, inspired by the Koopman theorem, is not guaranteed, and therefore a
choice of Att and Btt which might work for a given system might break down for another, as illustrated
for instance in the numerical results reported here (see Section 2.4.2).

In Section 2.3, we present a new SCF scheme, which better respects the essence of the ROHF equations
and which is parameter-free. We then briefly describe how the DIIS acceleration algorithms write on
the flag manifold of ROHF states. In Section 2.3.2.1, we extend the ODA to the ROHF setting. In
Section 2.4, we compare the performance of the new algorithms introduced in this article to the state-
of-the-art SCF algorithms for some challenging chemical systems, such as organic ligands chelating – or
simply interacting with – transition metals. Although computationally demanding in their current state,
our new algorithms showcase robust convergence properties, and give new perspective on the design of
black-box SCF algorithms for open-shell systems.

2.2 The ROHF optimization problem
In this section, we first present the ROHF model in density matrices (DM) and molecular orbitals (MO)
formalisms (without virtual orbitals). We then introduce the manifold of ROHF states. This manifold has
a rich geometrical structure, known as a flag manifold. Although they are equivalent, each formalism DM
or MO produces a specific discretization of the flag manifold of ROHF states, the ROHF energy gradient
and optimality conditions, each one providing some insight on the ROHF problem.

2.2.1 The ROHF model
In ROHF theory, trial wavefunctions Ψ are not, in general, single Slater determinants, but configuration
state functions (CSFs) [PD14; HJO14]. The latter are eigenfunctions of the spin operators Ŝ2 and Ŝz and
of the number operators n̂i = a†

i↑ai↑ + a†
i↓ai↓, for a given orthonormal basis of orbitals (ϕ1, ϕ2, · · · ) of

L2(R3;C):
Ŝ2Ψ = s(s+ 1)Ψ, ŜzΨ = msΨ, n̂iΨ = niΨ,
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for given s ∈ 1
2N, ms ∈ {−s,−s + 1, · · · , s − 1, s}, and ni ∈ {0, 1, 2}. Up to reordering the orbitals, we

can assume that
ni = 2 ∀i = 1, · · · , Nd,
ni = 1 ∀i = Nd + 1, · · · , Nd +Ns,

ni = 0 ∀i > Nd +Ns.

Then, Ψ is a finite sum of Slater determinants, each of them made of the Nd doubly occupied orbitals
ϕ1, · · · , ϕNd

and Ns spin-orbitals of the form ϕNd+1 ⊗ η1, · · · , ϕNd+Ns
⊗ ηNs

, the function ηj being equal
to either α (spin-up) or β (spin-down). The numbers Nd, Ns, N (number of electrons in the system), s,
and ms are such that

2Nd +Ns = N, |ms| ≤ s ≤ 1
2Ns.

We also denote by No := Nd +Ns the number of (singly or doubly) occupied orbitals.

For maximum spin states (s = 1
2Ns) and maximum ms value (ms = s), ROHF trial wavefunctions are

single Slater determinants built with Nd doubly occupied orbitals ϕ1, · · · , ϕNd
and Ns spin-up-orbitals

ϕNd+1 ⊗ α, · · · , ϕNo
⊗ α, where the ϕi’s satisfy 〈ϕi|ϕj〉 = δij for all 1 ≤ i, j ≤ No. The electronic

Hamiltonian

HN = −1
2

N∑
i=1

∆ri
+

N∑
i=1

Vnuc(ri) +
∑

1≤i<j≤N

1
|ri − rj |

being real-valued in the absence of external magnetic field and spin-orbit coupling, we can assume without
loss of generality that the orbitals ϕi are real-valued. In order to obtain a computationally tractable model,
the ϕi’s are expanded in a finite basis set X := (χ1, · · · , χNb

) of real-valued functions of the space variable:

ϕi(r) =
Nb∑
µ=1

[Co]µiχµ(r).

In practice, the χµ’s are non-orthogonal atomic orbitals (AO). In order to simplify the presentation, we
will however assume here that the basis X is orthonormal, or equivalently that the overlap matrix is the
identity matrix:

Sµν :=
ˆ
R3
χµ(r)χν(r) dr = δµν .

Let us emphasize that we make this simplification for pedagogical purposes only; extending our arguments
to non-orthogonal basis sets is a simple exercise. In that setting, the orthonormality constraints on the
orbitals imply that Co is a rectangular orthogonal matrix; in other words, a point of the Stiefel manifold

Co ∈ St(No;RNb) := {Co ∈ RNb×No s.t. CTo Co = INo
} (2.2.1)

where INo
denotes the identity matrix of rank No. In the following, it will be helpful to decompose Co as

two orthogonal matrices

Co = (Cd|Cs) with Cd ∈ RNb×Nd and Cs ∈ RNb×Ns (2.2.2)

corresponding to the coefficients of the doubly and singly occupied orbitals respectively.

From Co, one can construct the density matrices (DM) Pd and Ps

Pd := CdC
T
d and Ps := CsC

T
s . (2.2.3)

The matrices Pd and Ps are the basis representations of the orthogonal projectors on the spaces spanned
by the doubly and singly occupied orbitals respectively. Recall that a square matrix P is an orthogonal
projector if P 2 = P = PT , and that its rank is the integer tr(P ). These matrices represent the one-body
density matrices (projectors)

γd =
Nd∑
i=1

|ϕi〉〈ϕi| and γs =
No∑

i=Nd+1
|ϕi〉〈ϕi| (2.2.4)
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in the basis set X :

γd =
Nb∑

µ,ν=1
[Pd]µν |χµ〉〈χν | and γs =

Nb∑
µ,ν=1

[Ps]µν |χµ〉〈χν |.

We have the following equivalences:

〈ϕi|ϕj〉 = δij for all 1 ≤ i, j ≤ No ⇔ CTd Cd = INd
, CTs Cs = INs

, CTd Cs = 0 (2.2.5)

⇔


P 2
d = Pd = PTd , tr(Pd) = Nd,

P 2
s = Ps = PTs , tr(Ps) = Ns,

PdPs = 0.
(2.2.6)

The maximum spin ROHF wavefunction Ψ generated by orthonormal doubly orbitals (ϕ1, · · · , ϕNb
)

and singly occupied orbitals (ϕNd+1, · · · , ϕNo) is completely determined (up to an irrelevant global phase)
by the one-body density matrices γd and γs defined by (2.2.4). Conversely any pair (γd, γs) of orthogonal
projectors satisfying tr(γd) = Nd, tr(γs) = Ns, and γdγs = 0 gives rise to a unique ROHF wavefunction
ΨROHF
γd,γs

of maximal spin (up to a global phase), whose energy is a function of (γd, γs):

EROHF(γd, γs) := 〈ΨROHF
γd,γs

|HN |ΨROHF
γd,γs

〉.

After discretization in the finite basis set X , the ROHF energy functional becomes a function of the
matrices Pd and Ps representing γd and γs in this basis:

E(Pd, Ps) := EROHF

(
Nb∑

µ,ν=1
[Pd]µν |χµ〉〈χν |,

Nb∑
µ,ν=1

[Ps]µν |χµ〉〈χν |

)
.

Standard algebraic manipulations lead to

E(Pd, Ps) = tr (h(2Pd + Ps)) + tr ((2J(Pd) −K(Pd))(Pd + Ps))

+ 1
2 tr ((J(Ps) −K(Ps))Ps) ,

(2.2.7)

where
[h]µν = 1

2

ˆ
R3

∇χµ(r) · ∇χν(r) dr +
ˆ
R3
Vnuc(r)χµ(r)χν(r) dr,

[J(P )]µν =
Nb∑

κ,λ=1
(µν|κλ)Pκλ, [K(P )]µν =

Nb∑
κ,λ=1

(µκ|νλ)Pκλ,

and
(µν|κλ) :=

ˆ
R3

ˆ
R3

χµ(r)χν(r)χκ(r′)χλ(r′)
|r − r′|

dr dr′.

In the following, we will use the fact that the matrix h ∈ RNb×Nb
sym is symmetric, and that the functions

J,K : RNb×Nb
sym → RNb×Nb

sym are linear and such that

tr(J(P )P ′) = tr(J(P ′)P ), tr(K(P )P ′) = tr(K(P ′)P ) for all P, P ′ ∈ RNb×Nb
sym . (2.2.8)

Note that the trace of Pd is equal to Nd, the number of doubly-occupied orbitals. The fact that each
of these orbitals hosts two electrons is taken into account by the factors 2 in the first two terms of the
right-hand side of Eq. (2.2.7). In view of (2.2.6), the density matrix (DM) formulation of the ROHF
ground state problem in the basis X reads

EROHF
∗ := min{E(Pd, Ps), (Pd, Ps) ∈ MDM(Nd, Ns;RNb)}, (2.2.9)

where

MDM(Nd, Ns;RNb) :=
{

(Pd, Ps) ∈ RNb×Nb
sym × RNb×Nb

sym | P 2
d = Pd, P

2
s = Ps, PdPs = 0,

tr(Pd) = Nd, tr(Ps) = Ns

}
. (2.2.10)

The set MDM is the set of admissible pairs of doubly and singly occupied density matrices, that are the
pairs of matrices actually representing a maximum spin ROHF state in the basis X .
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Remark 2.2.1. The optimization problem (2.2.9) corresponds to the ROHF model for maximum spin states
(|ms| = s = 1

2Ns). For other spin states (|ms| ≤ s < 1
2Ns), the ROHF problem still is of the form (2.2.9).

The energy functional E has a different expression (due to the Fock exchange term coupling only spin-
orbitals having the same spin), but remains a sum of linear and bilinear forms in (Pd, Ps). See e.g. ref.
[HJO14] for the derivation of the non-maximal spin energy expressions using the genealogical coupling
scheme. Note that the algorithms presented in this article, although formulated for maximum spin state
case, can therefore be straightforwardly extended to any spin state.

The ROHF energy in MO formalism can be deduced from (2.2.3) and (2.2.7), for all Co ∈ St(No,RNb)

E(Co) = E(CdCTd , CsCTs ). (2.2.11)

An important difference between the DM and MO formalisms is that an ROHF state is represented by
one and only one point of (Pd, Ps) ∈ MDM(Nd, Ns;RNb) (more precisely, the manifold of ROHF states
is diffeomorphic to MDM(Nd, Ns;RNb)), while it is represented by an infinity of points in St(No;RNb),
namely the points in the set{

Co

(
Ud 0
0 Us

)
= (CdUd|CsUs), where (Ud, Us) ∈ ONd

× ONs

}
⊂ St(No,RNb). (2.2.12)

where we denoted ON = {U ∈ RN×N s.t. UTU = IN} the orthogonal group of N ×N matrices.
One way to recover the unicity of representation of ROHF states in MO formalism relies on the abstract

notion of quotient sets. We introduce the equivalence relation on St(No;RNb) defined by

Co ∼ C ′
o ⇔ ∃(Ud, Us) ∈ ONd

× ONs
such that C ′

o = Co

(
Ud 0
0 Us

)
, (2.2.13)

such that the set (2.2.12) is an equivalence class for the equivalence relation (2.2.13). Then the set of all
equivalence classes (2.2.12), defined as the quotient

MMO(Nd, Ns;RNb) := St(No;RNb)/ ∼= St(No;RNb)/(ONd
× ONs

) (2.2.14)

is diffeomorphic to both MDM(Nd, Ns;RNb) and the set of ROHF states. In particular, a ROHF state is
represented by one and only one element of MMO(Nd, Ns;RNb). Let us clarify the meaning of this property.
An element of the quotient MMO(Nd, Ns;RNb) is by definition an equivalence class (2.2.13). It can there-

fore be represented by some Co ∈ St(No;RNb) or by any C ′
o = Co

(
Ud 0
0 Us

)
, for (Ud, Us) ∈ ONd

×ONs .

Denoting JCoK the equivalence class containing Co, (JCoK ∈ MMO(Nd, Ns;RNb)), we have

JCoK = JCo
(
Ud 0
0 Us

)
K, ∀(Ud, Us) ∈ ONd

× ONs
.

In addition E(Co) = E(Co
(
Ud 0
0 Us

)
) (i.e. all Co ∈ St(No;RNb) in the same equivalence class have the

same ROHF energy), so that E can be seen as a function from MMO(Nd, Ns;RNb) to R, also denoted E
for simplicity. We can therefore write the ROHF minimization problem in MO formalism as

EROHF
∗ := min{E(JCoK), JCoK ∈ MMO(Nd, Ns;RNb)}. (2.2.15)

The quotient nature of MMO(Nd, Ns;RNb) is not a mere theoretical tool, but is crucial to build efficient
implementations of optimization algorithms in MO representation. Yet, taking into account this specificity
of MO formalism would require to introduce additional mathematical objects, which could obscure the
main subject of our discussion. For that reason, we will mainly focus in the following on the DM formalism,
for which MDM(Nd, Ns;RNb) can be seen as a simple subset of RNb×Nb

sym ×RNb×Nb
sym . Additionally, the ROHF

energy functional has a simple form in DM representation, which makes the DM formalism well-suited for
methodological developments.

From a mathematical point of view, MDM(Nd, Ns;RNb) and MMO(Nd, Ns;RNb) are smooth (i.e.
infinitely differentiable, C∞) compact manifolds. While the DM and MO parametrizations of ROHF
states seem quite different, they are in fact two representations of a same geometric object, as we now
discuss bellow.
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2.2.2 The manifold of ROHF states
The purpose of this section is to give some insights on the manifolds of ROHF states MDM(Nd, Ns;RNb)
and MMO(Nd, Ns;RNb). In order to simplify the notations, we will abbreviate the DM and MO sets as
MDM and MMO, and denote by x the points in MDM and JyK the points in MMO.

Let us start with a point x = (Pd, Ps) ∈ MDM. Since Pd is a rank-Nd orthogonal projector (i.e. a
symmetric matrix fulfilling P 2

d = Pd and Tr(Pd) = Nd), it can be diagonalized in an orthonormal basis
of RNb and its only eigenvalues are 1 (multiplicity Nd) and 0 (multiplicity Ns + Nv). Likewise, Ps is a
rank-Ns orthogonal projector. In addition, as PdPs = 0, we also have PsPd = (PdPs)T = 0, which implies
that Pd and Ps commute and can therefore be co-diagonalized in the same orthonormal basis. Introducing
the projector

Pv := INb
− Pd − Ps

on the virtual space (the space spanned by the virtual orbitals), which satisfies P 2
v = Pv = PTv , tr(Pv) = Nv,

and PdPv = PsPv = 0, we obtain that there exists a unitary matrix C ∈ ONb
such that

Pd = CIdCT , Ps = CIsCT , Pv = CIvCT , CCT = INb
, (2.2.16)

where

INd
=

 INd
0 0

0 0 0
0 0 0

 , INs
=

 0 0 0
0 INs 0
0 0 0

 and INv
=

 0 0 0
0 0 0
0 0 INv

 . (2.2.17)

The equations (2.2.16) and (2.2.17) are equivalent to finding an orthonormal basis of eigenvectors (which
form the unitary matrix C) of the projectors and selecting the ones corresponding to the eigenvalue 1.
Decomposing C as (Cd|Cs|Cv) we have

Pd = CdC
T
d , Ps = CsC

T
s Pv = CvC

T
v . (2.2.18)

In other words, the set Cd (respectively Cs) is the set of Nd (respectively Ns) natural orbitals associated
to the density matrix Pd (respectively Ps). The orbitals in Cv are then the orthogonal complement to Cd
and Cs. The equations (2.2.18) provide a one-to-one correspondence between (Pd, Ps) ∈ MDM and the
set of occupied natural orbitals JCo = (Cd|Cs)K ∈ MMO.

This relation between MO and DM formalism can be seen in a geometrical setting, by considering the
spaces

Vd = Span
(
ϕi, i ∈ {1, . . . , Nd}

)
and Vs = Span

(
ϕi, i ∈ {Nd + 1, . . . , Nd +Ns}

)
(2.2.19)

spanned by the doubly and singly occupied orbitals respectively. In a discretization basis X , the pair
of spaces (Vd,Vs) can be parametrized by the pair (Pd, Ps) ∈ MDM of respective orthogonal projectors
onto Vd and Vs. It is also parametrized by the coefficients Cd and Cs in the discretization basis X of an
orthonormal basis of Vd and Vs. Now, all basis sets represented by a matrix in JCo = (Cd|Cs)K span the
same spaces. Hence the couple (Vd,Vs) is parametrized by a single point JCoK ∈ MMO. Because of the
orthonormality constraints (2.2.6), Vd and Vs verify{

{0L2(R3)} ( Vd ( Vd ⊕ Vs ( Span (X ),
dim(Vd) = Nd, dim(Vd ⊕ Vs) = Nd +Ns.

(2.2.20)

Mathematically, the pair of spaces (Vd,Vd ⊕ Vs) with property (2.2.20) is called a flag with dimensions
Nd and Nd + Ns. The set of all such pair of spaces has been studied in the mathematical litera-
ture (see e.g. [Lee13, Example 21.22]). It is a smooth manifold called a flag manifold and denoted
Flag(Nd, Nd +Ns;RNb).

From the above reasoning there is a one-to-one correspondence between ROHF states and points on
Flag(N1, N1 +N2;RNb). In other words, the DM and MO sets are two discretizations of the flag manifold
Flag(N1, N1 +N2;RNb), which writes as the diffeomorphisms

MMO(N1, N2;RNb) ' Flag(N1, N1 +N2;RNb) ' MDM(N1, N2;RNb). (2.2.21)
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In order to derive the first-order optimality conditions associated to the minimization problem (2.2.9)
(a.k.a. the ROHF equations in DM formalism) from a simple geometrical argument, we have to iden-
tify the space TxMDM to a point x ∈ MDM of the manifold, that is the vector space of velocities
q = (Qd, Qs) = ṗ(0) at t = 0 for all paths

p : [−1, 1] 3 t 7→ p(t) ∈ MDM, such that p(0) = x (2.2.22)

drawn on MDM (as shown in Fig. 2.1). Similarly, the ROHF equations in MO formalism are found by
identifying the tangent spaces TJyKMMO.

p(t)

x = p(0)q = ṗ(0) TxMDM

MDM

Figure 2.1 – Representation of the tangent space TxMDM at x to the manifold MDM, and a smooth path
p : [−1, 1] 3 t 7→ p(t) ∈ MDM drawn on MDM such that p(0) = x and ṗ(0) = q ∈ TxMDM.

Flag manifolds, such as MDM and MMO have been studied in the context of optimization in the recent
work [YWL22], where the authors derive in particular the formulations for the tangent spaces TxMDM and
TJyKMMO. To keep this article as self contained as possible, and to make it understandable to readers with
limited background in differential geometry, we will adopt in the following section a pedestrian approach,
and re-derive in a few lines the tangent spaces and first order optimality conditions in DM formalism. As
mentioned above, details concerning the MO formalism are reported in appendix.
Remark 2.2.2. In general, a flag of length d in a vector space V of dimension Nb is a sequence of subspaces
{Vi}16i6d of V that is strictly increasing for the inclusion. This is to be understood as V1 ( · · · ( Vd ( V.
A standard example of a flag in V is given by {Vi = Span(e1, · · · , ei)}16i6Nb

where (e1, · · · , eNb
) is the

canonical basis of V. The set of all flags in V with fixed respective dimensions dim(Vi) = ni is also a
smooth manifold denoted Flag(n1, · · · , nd;V) (see e.g. [Lee13, Example 21.22]).

2.2.3 First-order optimality conditions
2.2.3.1 General considerations on optimization in the DM framework

Finding a point x∗ = (Pd∗, Ps∗) in MDM which minimizes the energy functional defined in (2.2.7) requires
the definition of the derivative of E with respect to the pair of density matrices x = (Pd, Ps). The
ROHF energy functional E(Pd, Ps) is not only defined for density matrices, but for any pair of real-valued
symmetric matrix z = (Wd,Ws) ∈ RNb×Nb

sym × RNb×Nb
sym , which might not be admissible density matrices.

Therefore, although the energy gradient ∇E(z) with respect to z = (Wd,Ws) can be easily computed once
a topology, allowing to define the later, has been chosen, imposing ∇E(z) = 0 is not enough to find the
optimal ROHF density matrices because of the constraints imposed by the properties of density matrices
(see Eq. (2.2.10)). The reason for this is that the gradient ∇E(x) has a component outside the manifold
MDM of density matrices, and following that component of the gradient will necessary lead outside the
manifold MDM. As illustrated in Fig. 2.2, the correct ROHF condition is therefore to find the point
x∗ ∈ MDM such that the projection of ∇E(x∗) onto the tangent space Tx∗M is zero.

2.2.3.2 Characterization of the DM tangent spaces

Let p be a path as in (2.2.22). We have for all t ∈ [−1, 1],

p(t) ∈ MDM and p(t) = x+ tq +O(t2) = (Pd + tQd + o(t), Ps + tQs + o(t)), (2.2.23)
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MDM

∇E(x)

TxMDM

MDM

∇E(x∗)

Tx∗MDM
x

x∗

Figure 2.2 – Side view of the manifold MDM with tangent space and ambient ROHF energy gradient at
(left) arbitrary point x (right) at optimal point x∗. The gradient ∇E(x∗) is orthogonal to the tangent
space Tx∗MDM (first order optimality conditions).

where the O(.) and o(.) notations are relative to the usual Euclidean topology. In other words, the
conditions (2.2.23) are equivalent to defining the tangent space TxMDM to x = (Pd, Ps) as the vector
space of pairs of symmetric real matrices q = (Qd, Qs) which allow to locally approximate the manifold of
density matrices MDM by an affine space, as pictorially represented in Fig. 2.1. The constraints defining
the manifold MDM (see Eq. (2.2.10)) are equivalent to the following at first order:

pd(t)2 = pd(t), tr(pd(t)) = Nd ⇔ PdQd +QdPd = Qd, tr(Qd) = 0, (2.2.24)
ps(t)2 = ps(t), tr(ps(t)) = Nd ⇔ PsQs +QsPs = Qs, tr(Qs) = 0, (2.2.25)

pd(t)ps(t) = 0 ⇔ PdQs +QdPs = 0. (2.2.26)

In the representation (2.2.16)-(2.2.17), the constraints (2.2.24)-(2.2.26) are equivalent to

Qd = C

 0 X Y
XT 0 0
Y T 0 0

CT and Qs = C

 0 −X 0
−XT 0 Z

0 ZT 0

CT , (2.2.27)

where X ∈ RNd×Ns , Y ∈ RNd×Nv , Z ∈ RNs×Nv are generic matrices. It follows that for all x = (Pd, Ps)
in MDM:

TxMDM = {(Qd, Qs) ∈ Vsym of the form (2.2.27)}
= {(Qd, Qs) ∈ Vsym | PdQdPd = PsQdPs = PvQdPv = PsQdPv = 0,

PdQsPd = PsQsPs = PvQsPv = PdQsPv = 0, Pd(Qd +Qs)Ps = 0}.

2.2.3.3 ROHF-Brillouin condition in the MO and DM framework

We denote the ambient DM space
VDM = RNb×Nb

sym × RNb×Nb
sym (2.2.28)

endowed with the Frobenius-like scalar product

〈(M1, N1), (M2, N2)〉DM := 1
2 (tr(M1M2) + tr(N1N2)) . (2.2.29)

Thanks to this inner product, the critical points of E on MDM can be characterized in a simple geometric
way (see Fig. 2.2):

x∗ critical point of E on MDM ⇔ ∇E(x∗) ∈ Tx∗M⊥
DM, (2.2.30)

where ∇E(x∗) is the gradient of E for the inner product 〈·, ·〉DM, and Tx∗M⊥
DM the orthogonal subspace

to Tx∗MDM, still for the inner product 〈·, ·〉DM. The condition of Eq. (2.2.30) is equivalent to state that,
taken at the optimal point x∗, the component of ∇E(x∗) on the tangent plane Tx∗M is zero. Recall that
for any x ∈ VDM, ∇E(x) is the vector of VDM characterized by

E(x+ δx) = E(x) + 〈∇E(x), δx〉DM + o(δx),
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which implies that the gradient depends on the choice of inner product. Also, for any x ∈ MDM, the
vector space TxM⊥

DM is defined by

TxM⊥
DM = {q′ ∈ VDM | ∀q ∈ TxM, 〈q, q′〉DM = 0} .

Gradient of E. Let us first detail the computation of ∇E(x) for any ROHF state x = (Pd, Ps) ∈ VDM.
Introducing the Fock operators

Fd(Pd, Ps) := h+ 2J(Pd) + J(Ps) −K(Pd) − 1
2K(Ps), (2.2.31)

Fs(Pd, Ps) := 1
2 (h+ 2J(Pd) + J(Ps) −K(Pd) −K(Ps)) , (2.2.32)

we have for all (Md,Ms) ∈ VDM

E(Pd +Md, Ps +Ms) = tr (h(2Pd + 2Md + Ps +Ms))
+ tr ((2J(Pd +Md) −K(Pd +Md))(Pd +Md + Ps +Ms))

+ 1
2 tr ((J(Ps +Ms) −K(Ps +Ms))(Ps +Ms))

= E(Pd, Ps) + tr (2Fd(Pd, Ps)Md) + tr (2Fs(Pd, Ps)Ms)

+ tr ((2J(Md) −K(Md))(Md +Ms)) + 1
2 tr ((J(Ms) −K(Ms))Ms)

= E(Pd, Ps) + 〈(4Fd(Pd, Ps), 4Fs(Pd, Ps)), (Md,Ms)〉DM

+ tr ((2J(Md) −K(Md))(Md +Ms)) + 1
2 tr ((J(Ms) −K(Ms))Ms) .

The gradient of E at x = (Pd, Ps) for the inner product 〈·, ·〉DM is therefore

∇E(x) = (4Fd(Pd, Ps), 4Fs(Pd, Ps)) with Fd(Pd, Ps) and Fs(Pd, Ps) given by (2.2.31)-(2.2.32). (2.2.33)

Characterization of TxM⊥
DM . Let q′ = (Md,Ms) ∈ VDM. Using the decomposition

Md = U

 Mdd
d Mds

d Mdv
d

Msd
d Mss

d Msv
d

Mvd
d Mvs

d Mvv
d

UT and Ms = U

 Mdd
s Mds

s Mdv
s

Msd
s Mss

s Msv
s

Mvd
s Mvs

s Mvv
s

UT , (2.2.34)

and the fact that Md and Ms are symmetric matrices, we obtain that for all q = (Qd, Qs) ∈ TxMDM of
the form (2.2.27),

〈q, q′〉DM = 1
2 tr

U
 0 X Y

XT 0 0
Y T 0 0

UTU

 Mdd
d Mds

d Mdv
d

Msd
d Mss

d Msv
d

Mvd
d Mvs

d Mvv
d

UT


+ 1

2 tr

U
 0 −X 0

−XT 0 Z
0 ZT 0

UTU

 Mdd
s Mds

s Mdv
s

Msd
s Mss

s Msv
s

Mvd
s Mvs

s Mvv
s

UT


⇔ 〈q, q′〉DM = tr

(
XT (Mds

d −Mds
s )
)

+ tr
(
Y TMdv

d

)
+ tr

(
ZTMsv

s

)
. (2.2.35)

Now, q′ belongs to the orthogonal subspace TxM⊥
DM if 〈q, q′〉DM = 0 for all q ∈ TxMDM. Therefore,

according to Eq. (2.2.35)

q′ ∈ TxM⊥
DM ⇔

(
Mds
d −Mds

s = 0, Mdv
d = 0, Msv

s = 0
)
. (2.2.36)

The critical points x∗ = (Pd∗, Ps∗) of E on MDM are then characterized by the first-order optimality
condition of Eq. (2.2.30), which according to Eqs. (2.2.33) and (2.2.36), leads to

(Fd∗ − Fs∗)ds = 0, F dvd∗ = 0, F svs∗ = 0, with Fd∗ := Fd(Pd∗, Ps∗) and Fs∗ := Fs(Pd∗, Ps∗).
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We recover the well-known ROHF optimality conditions (see e.g. [PD14]), which can also be written as{
Pd∗(Fd∗ − Fs∗)Ps∗ = 0, Pd∗Fd∗Pv∗ = 0, Ps∗Fs∗Pv∗ = 0,
with Fd∗ := Fd(Pd∗, Ps∗) and Fs∗ := Fs(Pd∗, Ps∗). (2.2.37)

We can similarly derive the optimality conditions in the MO representation, by endowing

VMO := RNb×No

with the Frobenius inner product

〈Co|C ′
o〉MO = tr

(
CTo C

′
o

)
= tr

(
CTd C

′
d

)
+ tr

(
CTs C

′
s

)
. (2.2.38)

This inner product is natural since it reproduces the L2-inner product. A calculation reported in appendix
shows that for all y = (Cd, Cs) ∈ VMO

∇E(y) = (4Fd(CdCTd , CsCTs )Cd, 4Fs(CdCTd , CsCTs )Cs) (2.2.39)

and that y∗ = (Cd∗, Cs∗) ∈ MMO is a critical point of E on MMO if and only if

Fd∗Cd∗ = Cd∗(CTd∗Fd∗Cd∗)1
2(Cs∗(CTs∗(Fd∗ + Fs∗)Cd∗),

Fs∗Cs∗ = Cs∗(CTs∗Fs∗Cs∗) + 1
2Cd∗(CTd∗(Fs∗ + Fd∗)Cs∗),

with Fd∗ := Fd(Cd∗C
T
d∗, Cs∗C

T
s∗) and Fs∗ := Fs(Cd∗C

T
d∗, Cs∗C

T
s∗).

(2.2.40)

It can be checked that C∗ = (Cd∗, Cs∗) ∈ MMO is solution to (2.2.40) if and only if (Pd∗, Ps∗) ∈ MDM is
solution to (2.2.37), where Pd∗

:= Cd∗C
T
d∗, Ps∗

:= Cs∗C
T
s∗. An important implication of Eqs. (2.2.40) is

that, unlike in the RHF and UHF frameworks, the optimal ROHF orbitals in Cd∗ and Cs∗ are not eigen-
functions of the Fock operators Fd∗ and Fs∗, because of the second term in the right hand side of the first
two equations in (2.2.40). As a consequence, SCF algorithms based on Fock-like operators involve ad-hoc
effective Hamiltonians for which the Aufbau principal is not always satisfied (see for instance Ref. [PD14]).

2.3 Self-consistent field (SCF) algorithms
In this section, we first present the various basic SCF iterations proposed in the literature, and introduce
a new one, which better respects the mathematical structure of the ROHF equations (2.2.37) and (2.2.40).
We then discuss the stabilization and acceleration of basic SCF iterations using Anderson-Pulay (DIIS-
type) algorithms.

2.3.1 Basic SCF iterations
The basic SCF algorithm for RHF was introduced by Roothaan [Roo60]. It consists in assembling the
Fock matrix for the current iterate (molecular orbitals or density matrix), diagonalize it (we still assume
orthonormality of the basis set for simplicity), and select the lowest energy eigenvectors to form the next
iterate (Aufbau principle). This idea can be straightforwardly extended to the UHF model, but not to the
ROHF model since the ROHF equations (2.2.40) cannot be formulated as a nonlinear eigenvalue problem.

Let x(k) = (P (k)
d , P

(k)
s ) ∈ MDM be the current iterate and

P
(k)
d = C(k)IdC(k)T , P (k)

s = C(k)IsC(k)T , C(k)C(k)T = INb
,

with C(k) = (C(k)
d |C(k)

s |C(k)
v ) ∈ O(Nb) the associated matrix of natural orbitals via (2.2.16). Let also

F
(k)
d := Fd(P (k)

d , P
(k)
s ) and F

(k)
s := Fs(P (k)

d , P
(k)
s ) be the associated Fock matrices:

F
(k)
d = C(k)

 F
(k)
d

dd
F

(k)
d

ds
F

(k)
d

dv

F
(k)
d

sd
F

(k)
d

ss
F

(k)
d

sv

F
(k)
d

vd
F

(k)
d

vs
F

(k)
d

vv

C(k)T , F (k)
s = C(k)

 F
(k)
s

dd
F

(k)
s

ds
F

(k)
s

dv

F
(k)
s

sd
F

(k)
s

ss
F

(k)
s

sv

F
(k)
s

vd
F

(k)
s

vs
F

(k)
s

vv

C(k)T .
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2.3.1.1 Standard approaches

The most popular simple SCF for ROHF consists in assembling and diagonalizing a composite effective
Hamiltonian of the form

H
(k)
A,B := C(k)

 R
(k)
dd (F (k)

d − F
(k)
s )ds F

(k)
d

dv

(F (k)
d − F

(k)
s )sd R

(k)
ss F

(k)
s

sv

F
(k)
d

vd
F

(k)
s

vs
R

(k)
vv

C(k)T , (2.3.1)

where R(k)
dd , R(k)

ss , and R
(k)
vv are symmetric matrices. The matrices R(k)

tt are of the form

R
(k)
tt = 2Att

(
F (k)
s

)tt
+ 2Btt

(
F

(k)
d − F (k)

s

)tt
, t ∈ {d, s, v},

where A = (Add, Ass, Avv) ∈ R3 and B = (Bdd, Bss, Bvv) ∈ R3 are coefficients characterizing the SCF
algorithm (see Table I in [PD14]). For instance, they are all equal to 1/2 in Guest and Saunders algorithm
[GS74], but are different and depend on the spin state in the Canonical-I and Canonical-II algorithms
introduced by Plakhutin and Davidson [PD14]. The next iterate (P (k+1)

d , P
(k+1)
s ) is obtained by filling

up first the doubly occupied orbitals, then the singly occupied orbitals, using the Aufbau principle. The
meta-algorithm for the basic SCF iteration is summarized in the algorithm 1. The iterates are uniquely

Algorithm 1: Standard SCF iteration for ROHF

Given: x(k) = (P (k)
d , P

(k)
s ) ∈ MDM, A = (Add, Ass, Avv) and B = (Bdd, Bss, Bvv).

1. Assemble H(k)
A,B and diagonalize in an orthonormal basis

H
(k)
A,BC

(k+1)
i = ε

(k+1)
i C

(k+1)
i , (C(k+1)

i )TC(k+1)
j = δij , ε

(k+1)
1 6 · · · 6 ε

(k+1)
Nb

.

2. Select the No first orbitals via the Aufbau principle

C
(k+1)
d = (C(k+1)

1 | · · · |C(k+1)
Nd

), C(k+1)
s = (C(k+1)

Nd+1 | · · · |C(k+1)
Nd+Ns

).

3. Construct the new iterate via (2.2.3)

P
(k+1)
d = C

(k+1)
d C

(k+1)
d

T
, P (k+1)

s = C(k+1)
s C(k+1)

s

T
, x(k+1) = (P (k+1)

d , P
(k+1)
d ).

defined provided
ε

(k+1)
Nd

< ε
(k+1)
Nd+1 and ε

(k+1)
No

< ε
(k+1)
No+1 (2.3.2)

(energy gaps between doubly and single-occupied orbitals on the one-hand, occupied and virtual orbitals
on the other hand). If the conditions (2.3.2) are not satisfied, iterates are defined by choosing randomly the
orbitals among those satisfying the Aufbau principle, or by selecting the ones minimizing the ROHF energy
functional. The SCF procedure interprets as a fix point method on the function gA,B : VDM −→ MDM
defined by

gA,B(x(k)) := x(k+1), with x(k+1) = (P (k+1)
d , P (k+1)

s ) as in algorithm 1. (2.3.3)
The basic SCF iterations (2.3.3) being extremely unstable (see section 2.4), they are generally stabilized
by direct inversion of the iterative subspace (DIIS) schemes [Pul80; Pul82; HP86; RS11; Chu+21].

A necessary and sufficient condition for (Pd∗, Ps∗) ∈ MDM to be a fixed point of gA,B is

HA,B∗Ci∗ = εi∗Ci∗, CTi∗Cj∗ = δij , ε1∗ 6 · · · 6 εNo∗. (2.3.4)

Let x∗ = (Pd∗, Ps∗) be such a fixed point and C∗ the associated matrix of natural orbitals via (2.2.3).
Then

Pd∗HA,B∗Ps∗ = Pd∗(Fd∗ − Fs∗)Ps∗ =
No∑

i=Nd+1
Pd∗HA,B∗Ci∗C

T
i∗ =

No∑
i=Nd+1

εi∗ Pd∗Ci∗︸ ︷︷ ︸
=0

CTi∗ = 0.
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A similar argument leads to Pd∗Fd∗Pv∗ = 0 and Ps∗Fs∗Pv∗ = 0 so that x∗ satisfy the optimality conditions
(2.2.37). Conversely, if x∗ satisfies (2.2.37), then HA,B∗ = diag (Rdd, Rss, Rvv) is bloc diagonal in the
orthogonal decomposition Ran(Pd∗) ⊕ Ran(Ps∗) ⊕ Ran(Pv∗) of RNb . Therefore, we have

HA,B∗Ci∗ = εi∗Ci∗, CTi∗Cj∗ = δij ,

Pd∗ =
Nd∑
i=1

Ci∗C
T
i∗, Ps∗ =

No∑
i=Nd+1

Ci∗C
T
i∗,

for some orthonormal basis (Ci∗)1≤i≤Nb
of RNb diagonalizing HA,B∗. It follows that a point x∗ ∈ MDM

is a critical point of E if and only if x∗ satisfies the conditions (2.3.4) except possibly the fact that the
doubly-occupied orbitals do not necessarily correspond to the lowest Nd eigenvalues of HA,B∗, or the singly-
occupied orbitals to the next Ns ones, which is equivalent to saying that the Aufbau principle does not
need to be satisfied a priori. As discussed in [PD14], there are indeed local minima of the ROHF problem
for which the Aufbau principle is not satisfied for any of the usual choices of A and B. We are therefore
facing a dilemma. Either the Aufbau principle can be kept in the definition of the SCF procedure, leading
to a simple iterative scheme, which is however unable to find the ROHF ground state in some cases. Or
the Aufbau principle can be discarded and replaced by a more complicated construction procedure, to be
specified.

2.3.1.2 A new strategy not based on the Aufbau principle

A way out of this dilemma is to attack the problem from a different perspective, using another interpre-
tation of the Roothaan scheme in DM formalism: in the RHF setting, the next iterate P (k+1) obtained
by an SCF iteration is the point P of the RHF manifold

MRHF
DM :=

{
P ∈ RNb×Nb

sym | P 2 = P, tr(P ) = Nd
}

in the direction along which the slope of the function t 7→ ERHF(P (k) +t(P −P (k))) is minimum [Can+03],
i.e.

P (k+1) ∈ argmin
P∈MRHF

DM

〈
∇ERHF(P (k))

∣∣P〉
VRHF

DM

= argmin
P∈MRHF

DM

Tr
[
FRHF(P (k))P

]
(2.3.5)

where FRHF(P ) = 1
2 ∇ERHF(P ) is the Fock matrix associated with the density matrix P , and where

VRHF
DM = RNb×Nb

sym is the ambient vector space for the RHF problem. In (2.3.5), argmin refers to the set of
minimizers of the linear form P −→

〈
∇ERHF(P (k)), P

〉
VRHF

DM
on MRHF

DM , to which P (k+1) belongs. This set
is always non empty, but may contain several elements. Transposing this characterization to the ROHF
setting, we can define a new basic SCF scheme on the manifold MDM: x(k+1) := (P (k+1)

d , P
(k+1)
s ) is

the point x ∈ MDM in the direction along which the slope of the function t 7→ E(x(k) + t(x − x(k))) is
minimum. It is therefore obtained from x(k) = (P (k)

d , P
(k)
s ) as

x(k+1) ∈ argmin
x∈MDM

〈∇E(x(k)), x〉VDM = argmin
x=(Pd,Ps)∈MDM

tr
(
F

(k)
d Pd

)
+ tr

(
F (k)
s Ps

)
, (2.3.6)

where F (k)
d := Fd(P

(k)
d , P

(k)
s ) and F (k)

s := Fs(P
(k)
d , P

(k)
s ). This motivates the introduction of the new basic

SCF scheme in algorithm 2 . The fixed points (Pd∗, Ps∗) of this SCF scheme verifies

Algorithm 2: New SCF iteration on MDM

Given: (P (k)
d , P

(k)
s ) ∈ MDM.

1. Compute the Fock matrices F (k)
d = Fd(P

(k)
d , P

(k)
s ) and F

(k)
s = Fs(P

(k)
d , P

(k)
s )

2. Choose next iterate (P (k+1)
d , P

(k+1)
s ) in

argmin
{

Tr
[
F

(k)
d Pd + F (k)

s Ps

]
, (Pd, Ps) ∈ MDM

}
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{
(Pd∗, Ps∗) ∈ argmin {E∗(Pd, Ps), (Pd, Ps) ∈ MDM} ,

with E∗(Pd, Ps) = tr(Fd(Pd∗, Ps∗)Pd) + tr(Fs(Pd∗, Ps∗)Ps).
(2.3.7)

Again this SCF procedure can be interpreted as a fix-point method on the function

gnew(x(k)) := x(k+1), with x(k+1) = (P (k+1)
d , P (k+1)

s ) as in algorithm 2. (2.3.8)

As E∗ is a linear form, its gradient is constant and equal for the inner product 〈·, ·〉VDM to (4Fd∗, 4Fs∗).
Replacing E with E∗ in the arguments in Section 2.2.3.3, we obtain that (2.3.7) implies (2.2.37), hence
that any fixed point (Pd∗, Ps∗) of the function gnew is a critical point of E on MDM.

The inner optimization problem

argmin
{

Tr
(
F

(k)
d Pd + F (k)

s Ps

)
, (Pd, Ps) ∈ MDM

}
(2.3.9)

on MDM solved at each step is easier and much cheaper to solve numerically than the original problem
(2.2.9) since the function (Pd, Ps) 7→ Tr(F (k)

d Pd + F
(k)
s Ps) is linear while the ROHF energy function

E(Pd, Ps) is nonlinear (see Eq. (2.2.7)). In particular, the Coulomb and Fock terms are not recomputed
at each iteration. To solve it, we can use a direct minimization algorithm with initial guess in

argmin
{

Tr(H(k)Pd + 1
2H

(k)Ps), (Pd, Ps) ∈ MDM

}
, (2.3.10)

where H(k) = F
(k)
d , or H(k) = H

(k)
A,B , with H

(k)
A,B given by (2.3.1). The solutions to (2.3.10) are easily

obtained by diagonalizing H(k) and applying the Aufbau principle. For H(k) = H
(k)
A,B , the iterate of the

new basic SCF scheme (2) is obtained using gA,B(P (k)
d , P

(k)
s ) as initial guess for the minimization problem

(2.3.9). It is also possible and more efficient in some cases to use, as an initial guess for the minimization
problem (2.3.9), the previous iterate (P (k−1)

d , P
(k−1)
s ). Let us mention however that this approach only

provides local (non-necessarily global) minima of (2.3.9). In practice, we choose for (P (k+1)
d , P

(k+1)
s ) the

approximation of the local minimum of (Pd, Ps) 7→ Tr(F (k)
d Pd + F

(k)
s Ps) on MDM obtained by a few

iterations of a preconditioned steepest-descent algorithm.

2.3.2 Anderson-Pulay (DIIS-type) acceleration
Anderson-Pulay acceleration (APA) is a terminology recently coined in [Chu+21] to gather various accel-
eration schemes into a general framework, including the Anderson acceleration scheme [And65] and the
DIIS scheme. Anderson-Pulay acceleration methods can be applied to any fixed-point problems of the
form

find x∗ ∈ W such that g(x∗) = x∗ (2.3.11)

where g : W → M is a C2 function from an open subset W of Rn into a smooth submanifold M of Rn.
In addition to the fix point map g, APA schemes require a residual function f : W → Rp of class C2 with
p 6 n, such that for any x ∈ W, g(x) = x if and only if f(x) = 0 (the residual vanishes at solutions to
the fixed point problem and only at those points). A possible choice is f(x) = x − g(x) (in which case
p = d), but the performance of the algorithm can usually be dramatically improved by resorting to well
suited residual functions. The APA schemes are based on linear combinations of the current iterate with
the previous ones, up to a certain depth 0 6 m 6 mmax. As an example, the standard DIIS acceleration
scheme writes for a given depth m, and fix-point map g

x(k+1) = g(ADIIS(x(k), . . . x(k−m))) (2.3.12)

where the map ADIIS is defined as follows. Let r(k) := f(x(k)) and define

Y (k) =
[
x(k−m+1) − x(k−m), · · · , x(k) − x(k−1)

]
, S (k) =

[
r(k−m+1) − r(k−m), · · · , r(k) − r(k−1)

]
.

Then
ADIIS(x(k), · · · , x(k−m)) := x(k) + r(k) − (Y (k) + S (k))α(k), (2.3.13)
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where the coefficients α(k) ∈ Rm are solution to the least square problem

α(k) ∈ argmin
α∈Rm

∥∥∥r(k) − S (k)α
∥∥∥2

Rp
.

Mathematical studies on the convergence of DIIS algorithms can be found in [RS11; CKL21; Chu+21].
The parameter mmax must be chosen large enough (typically mmax = 10 or 20 in quantum chemistry
packages) to ensure fast convergence, using sufficient information from previous iterations. One of the
limitations of DIIS is that iterates with large residuals (far away from the minimizer) are considered as
well, whereas they should be discarded. To cure this deficiency, an adaptive depth approach is proposed
in [Chu+21], which should be investigated.

Choice of g. In order to be applied to SCF iterations, we need an iteration function defined in an open
neighborhood W of MDM since the points A(x(k), . . . , x(k−m)), which are linear combinations of points
of MDM, do not belong to MDM in general. We can directly use one of the basic SCF iteration functions
gA,B or gnew corresponding to the respective algorithms 1 and 2, since they are defined for any point of
VDM.

Choice of f . From (2.2.37), a natural choice for the residual function is to take for all x = (Pd, Ps)

f(Pd, Ps) := ((Fd(Pd, Ps) − Fs(Pd, Ps))ds, (Fd(Pd, Ps))dv, (Fs(Pd, Ps))sv) (2.3.14)

which is the projection on TxM⊥
DM of the gradient ∇E(x). Remark that this is but a geometrical derivation

of the standard commutator based residual used e.g. in GAMESS. In DIIS algorithms, the residual function f
is only evaluated at points of the manifold MDM, but must have a C2 extension to W for local convergence
to be mathematically guaranteed [Chu+21]. This is obviously the case for the function f defined by (2.3.14)
on MDM.

2.3.2.1 Relaxed constrained algorithms for ROHF

Relaxed constrained algorithms for the Unrestricted and General Hartree-Fock setting were introduced
in [CB00]. They consist in optimizing the energy functional in the DM formulation on the convex hull
of the admissible set. For the UHF and GHF problems, it can be shown that the relaxed constrained
problem has the same global minimizers as the original one [Can00; CKL21]. The advantage of the relaxed
constrained problems is that convex combinations of admissible solutions are admissible solutions as well.

Algorithm 3: ODA iteration for ROHF

Given: current Fock-like matrices (F̃ (k)
d , F̃

(k)
s )

1. Pick (P (k+1)
d , P

(k+1)
s ) ∈ argmin

{
Tr
(
F̃

(k)
d Pd + F̃

(k)
s Ps

)
, (Pd, Ps) ∈ MDM

}
2. Compute the Fock matrices F (k+1)

d := Fd(P (k+1)
d , P

(k+1)
s ), F (k+1)

s := Fs(P (k+1)
d , P

(k+1)
s ) and set

(P̃ (k+1)
d , P̃

(k+1)
s ) = (1 − tk)(P̃ (k)

d , P̃
(k)
s ),+tk(P (k+1)

d , P
(k+1)
s )

(F̃ (k+1)
d , F̃

(k+1)
s ) = (1 − tk)(F̃ (k)

d , F̃
(k)
s ),+tk(F (k+1)

d , F
(k+1)
s )

where tk is the minimizer of the quadratic function

[0, 1] 3 t 7→ E((1 − t)(P̃ (k)
d , P̃ (k)

s ) + t(P (k+1)
d , P (k+1)

s )).

The simplest relaxed constrained algorithm is the optimal damping algorithm (ODA). It generates two
sequences of iterates:

• a sequence (x(k)) of points on the admissible manifold MDM;

• a sequence (x̃(k)) of points in the convex hull of MDM.
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The point x̃(k+1) is obtained by doing an optimal convex combination of x̃(k) and x(k+1):

tk = argmin
t∈[0,1]

E(tx(k+1) + (1 − t)x̃(k)), x̃(k+1) = tkx
(k+1) + (1 − tk)x̃(k).

The function pk(t) := E(tx(k+1) + (1 − t)x̃(k)) is a second degree polynomial and we have

pk(0) = E(x̃(k)) and p′
k(0) = 〈∇E(x̃(k)), x(k+1) − x̃(k)〉VDM .

Computing pk(1) = E(x(k+1)), we obtain the value of tk explicitly. The point x(k+1) is chosen so as to
minimize the slope p′

k(0); it is therefore obtained from x̃(k) as

x(k+1) ∈ argmin
x∈MDM

〈∇E(x̃(k)), x〉VDM = gnew(x̃(k)),

where gnew is defined in (2.3.8). The ODA is initialized by choosing an initial guess x(0) = (P (0)
d , P

(0)
s ) in

MDM, by setting x̃(0) = x(0), and by computing (F̃ (0)
d , F̃

(0)
s ) = (Fd(P

(0)
d , P

(0)
s ), Fs(P

(0)
d , P

(0)
s )). One then

performs ODA iteration as written in algorithm 3.

2.4 Numerical results

2.4.1 Methodology and summary of the results
We now analyze the performance of the algorithms introduced in this article which are

• the standard SCF (algorithm 1) and new SCF (algorithm 2), with respective fix point map gA,B and
gnew, endowed with a DIIS acceleration with residual f given by (2.3.14);

• the ODA scheme as described in algorithm 3.

Convergence behaviors are investigated in two distinct regimes:

• the global convergence regime. The goal here is to reach the vicinity of a minimizer, starting from
a bad initial guess obtained in practice by diagonalizing the core Hamiltonian;

• the local convergence regime, when the initial guess is close to a minimizer. We choose in this study
the extended Hückel initial guess derived from the Wolfsberg-Helmholtz approximation [WH52;
Hof63; Amm+78].

Our implementation. The application of the gnew map requires to solve the inner optimization problem
(2.3.9). In our implementation, we use the initial guess (2.3.10) with H(k) = F

(k)
d . We then apply a

maximum of 10 iterations of preconditioned steepest descent on the DM manifold.
For the ODA method, it happens in some cases that the coefficient tk of the ODA convex combination

becomes zero, which results in the algorithm getting stuck on the iterate x(k). In that case, we automati-
cally try a different guess for the inner problem (2.3.9). Using a guess generated with gA,B and Euler or
Guest and Saunders coefficients whenever tk = 0 proved effective in all the cases we encountered.

The new algorithms we introduce, along with the classical SCF schemes, have been implemented in a
Julia [Bez+17] package as a proof of concept. This package is built as an overlay to the PySCF [Sun+20]
python library, which handles the core computations for ROHF (generation of the AO basis and initial
MOs, computation of the electronic integrals). Comprehensive details of implementation can be found in
our open-source research code https://github.com/LaurentVidal95/ROHFToolkit. The best performing
algorithms will be added as a plugin within the Quantum Package [Sce+16; Gar+19] and made freely
available to the community.
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Comparison to external code. In order to assert the validity of our code, we compare the perfor-
mances of our algorithms with the SCF algorithms for ROHF available in GAMESS [Sch+93]. We have
chosen this popular software because all the classical functions gA,B are implemented, as well as the resid-
ual (2.3.14) for DIIS and the SOSCF algorithm. We have also run tests with PySCF and Psi4 [Tur+12]
(which respectively implement Roothan and Guest and Saunders’ gA,B). The DIIS residual functions
implemented in these codes can be slightly different but all also use commutator-based residual functions
à la Pulay [Pul82], involving the effective Hamiltonian HA,B .

The initial guesses for the SCF problem, the one generated by GAMESS and those employed in our
implementation (generated by PySCF), can differ significantly. Specifically, the extended Hückel guess
in GAMESS tends to yield energies approximately 1 to 2 Ha above the ground state energy in our test
cases, while the PySCF Hückel guesses produce initial energies ranging from 20 to 60 Ha above the ground
state. To ensure methodological consistency, and facilitate the direct comparison between the two codes,
we manually imported the GAMESS Hückel guess in our code for the 6-31G basis set [HP74; Fra+82;
Bla+97] for some of our test cases. We observed no qualitative difference for this choice of basis set.
Unfortunately, the two quantum chemistry packages employ different conventions in generating atomic
basis sets, particularly concerning the number and order of the atomic orbitals, which makes the systematic
import of GAMESS guesses in our code a laborious task. The comparison with GAMESS should therefore only
serve as a qualitative evaluation of our implementation.

Global convergence regime. First, the algorithms are tested by starting very far from an expected
minimum, i.e. starting from a core Hamiltonian diagonalization guess, obtained with GAMESS and PySCF
respectively. Poor quality guesses do not usually verify the Aufbau principle on which the classical SCF
methods, built with function gA,B (2.3.3), rely (as recalled section 2.3). Numerical results presented in
Section 2.4.3.1 confirm that, unlike the classical SCF methods for ROHF, which mostly fail to converge
in this regime (in all the tested cases but the simplest one), our methods built on gnew, which are free of
Aufbau principle requirement, exhibit a strong robustness with respect to the initial guess.

Local convergence regime. As detailed in section 2.4.3.2, existing methods built on the classical gA,B
barely benefit from the use of an extended Hückel guess, which is more commonly used in practice. Only
two or four choices of Att and Btt coefficients, depending on the test case, yield convergence for these so-
called gA,B-based methods (see Table 2.4), with the Guest and Saunders choice being the most successful.
Our gnew–based methods, that are free of the choice of such coefficients, manage to converge in all cases
from this starting guess.

Local minima. The respective gA,B-based methods, as well as our gnew-based methods, converge toward
a variety of local minima. The list of all minima have been reported in appendix. Note that the variation in
the implementation of basis sets between GAMESS and our code results in a minor difference in energies.
A detailed analysis of the encountered local minima, reached from the core guess and from the Hückel
guess, would be needed to assess their quality. It appears that in some cases, the local minima found by
starting from the core initial guess, are lower in energy than other minima reached from extended Hückel
initial guesses. One should elaborate further on this point in another study.

Our best performing method. When focusing on the energy only, the ODA algorithm seems to target
a low minima, independently of the initial guess, while being very slow to converge to chemical accuracy.
Applying a few iterations of ODA, followed by gnew+DIIS to help convergence is a good candidate for an
efficient black-box SCF less sensitive to the initial starting point (see Table 2.5).

Throughout the next sections, qualitative convergence results are tagged with the following convention:

• non-convergence: the energies of the iterates oscillate above the ground state energy by at least
10−2 Ha and the residual does not go to zero. In many cases, the oscillations occur between 1 and
100 Ha above the ground state energy;

• stagnation or small-amplitude oscillations : the algorithm stalls or the iterates display small-
amplitude oscillations while the residual is small but not small enough in the sense that the limit
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values of the energy are 10−4 to 10−2 Ha higher than the ground state energy (or another local
minimum)

• X convergence to a local minimizer.

2.4.2 Basic SCF iterations
We first illustrate the limitations of the classical iteration functions gA,B, as defined in (2.3.3), and the
relevance of the new iteration function gnew defined in (2.3.8), by analyzing the behavior of the correspond-
ing basic SCF algorithms x(k+1) = g(x(k)) (without any stabilization/acceleration technique) on simple
mono-atomic systems: an oxygen atom in the triplet state, Fe2+ and Fe3+ ions in high-spin configurations
(respectively quintet and sextet states).

Recall that the function gA,B is computed by diagonalizing an effective Hamiltonian depending on the
input ROHF state and ad hoc coefficients Att and Btt, and constructing the output ROHF state using
the Aufbau principle (see Section 2.3). The performance of the basic SCF algorithm x(k+1) = gA,B(x(k))
is found to be very sensitive to the choice of the Att and Btt coefficients; besides, no choice of coefficients
provides consistent convergence for the three simple systems. In contrast, the basic fixed-point algorithm
built upon the parameter-free iteration function gnew has been able to converge for the three systems. The
results reported in Table 2.1 have been obtained with the double-zeta correlation-consistent Dunning’s
type basis set (cc-pVDZ) [Dun89] and the Hückel initial guess from PySCF. Qualitatively similar results
have been obtained with the core initial guess and/or other basis sets (e.g 6-31G, pc-1).

Method Att Btt
O

(triplet)
Fe2+

(quintet)
Fe3+

(sextet)
Roothan (− 1

2 ,
1
2 ,

3
2 ) ( 3

2 ,
1
2 ,−

1
2 ) X(17) X(45)

McWeeny and Diercksen ( 1
3 ,

1
3 ,

2
3 ) ( 2

3 ,
1
3 ,

1
3 ) X(13)

Davidson ( 1
2 , 1, 1) ( 1

2 , 0, 0) X(12)

Guest and Saunders ( 1
2 ,

1
2 ,

1
2 ) ( 1

2 ,
1
2 ,

1
2 ) X(11) X(22)

Binkley, Pople and Dobosh ( 1
2 , 1, 0) ( 1

2 , 0, 1) X(10)

Faegri and Manne ( 1
2 , 1,

1
2 ) ( 1

2 , 0,
1
2 ) X(11)

Euler equations ( 1
2 ,

1
2 ,

1
2 ) ( 1

2 , 0,
1
2 ) X(10)

Canonical-ROHF I ( 2S+1
2S , 1, 1) (− 1

2S , 0, 0) X(11)

Canonical-ROHF II (0, 0,− 1
2S ) (1, 1, 2S+1

2S ) X(20)

gnew (2.3.8) parameter free X(10) X(21) X(12)

Table 2.1 – Convergence of the basic fixed-point algorithm x(k+1) = g(x(k)) for the atomic systems O, Fe2+,
and Fe3+ (cc-pVDZ basis set, PySCF Hückel initial guess), for (i) the classical gA,B iteration functions (see
Table I in Ref. [PD14]), and (ii) the gnew iteration function (this work). The table follows the conventions
detailed in the introduction to Section 2.4. The number of iterations needed to reach convergence is
specified when the algorithm happens to converge (chosen convergence criterion: the energy of the current
iterate is at most 10−6 Ha above the ROHF ground state).

2.4.3 Stabilized and accelerated iteration schemes
Table 2.2 summarizes the benchmark systems considered in this section. They consist of organic molecules
bearing aromatic moieties (such as pyridine or porphyrin), interacting with open-shell metallic ions (see
Figure 2.3). These systems are representative of the complexity of open-shell calculations in quantum
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chemistry as they contain transition metal ions with high spin in interaction with non trivial aromatic
organic ligands [LMA18]. The combination of strong repulsion in the 3d shell of the metals together
with the very delocalized character of the π system in these organic ligands can lead to SCF instabilities
precisely because, according to the choice of the flavor of effective Hamiltonian used in the gAB function,
the Aufbau principle is not fulfilled in these systems. We have picked up both systems having space
symmetries, such as pyridine–Cu2+ (Cs symmetry) and the Porphyrin model–Fe2+ (D4h symmetry), and
systems with slightly broken symmetry, such as Pyridine–Fen+. We infer the spin multiplicities M = 2S+1
of these systems (where S is the total spin) from the corresponding spin multiplicities of the metallic ions,
following Hund’s rule. In some cases, it is actually challenging to determine the spin multiplicity of the
ground state (e.g. triplet or quintet), such as for the iron–porphyrin model system [LMA18]. We have
performed some test calculations on a full Porphyrin–Fe2+ system (37 atoms, 269 basis functions for 6-
31G), that yielded qualitatively similar results as for the Porphyrin model–Fe2+ system. For the sake of
brevity, we do not report them here.

System Number
of atoms Nd / Ns

Multiplicity
(2s+1) Basis

Number of
basis

functions
Pyridine – Cu2+ 12 34 / 1 2 6-31G 93
Pyridine – Cu2+ 12 34 / 1 2 cc-pVDZ 164
Pyridine – Fe2+ 12 31 / 4 5 6-31G 93
Pyridine – Fe2+ 12 31 / 4 5 cc-pVDZ 164
Pyridine – Fe3+ 12 30 / 5 6 6-31G 93
Pyridine – Fe3+ 12 30 / 5 6 cc-pVDZ 164

Porphyrin model – Fe2+ 29 66 / 4 5 6-31G 197
Porphyrin Fe2+ 37 90 / 4 5 6-31G 269

Table 2.2 – Benchmark systems used in Section 2.4.3.

Figure 2.3 – Left: Pyridine - Cu2+. Middle: Porphyrin model – Fe2+ taken from [LMA18]. Right:
Porphyrin – Fe2+. Figures have been generated with the Vesta software [MI08].

We have tested several families of basis sets representative of quantum chemistry calculations, i.e. the
6-31G and cc-pVDZ basis sets.

2.4.3.1 Global convergence regime

In this section, we analyze the ability of the various algorithms described in Section 2.3 to reach the
vicinity of a local minimizer from the core initial guess. We consider that this is achieved if the energies
of the iterates approach 0.1 Ha from the ROHF ground state energy. We compare the new algorithms
proposed in this work with existing algorithms as implemented in GAMESS [Sch+93], namely the SOSCF
algorithm and the DIIS schemes built from the iteration functions gA,B and residual function f (2.3.14).
The results for the molecular systems in Table 2.2 in the 6-31G basis set are gathered in Table 2.3.
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Algorithms based on gA,B iteration functions. We observe in the second and third columns of
Table 2.3 that the results of the GAMESS implementation of DIIS are close to our DIIS implementation.
For several choices of coupling coefficients Att, Btt, the standard SCF+DIIS method fails to converge,
and leads to oscillations. For the Pyridine−Fe2+ and Fe3+ systems, and (respectively) for the Porphyrin
model − Fe2+ system, only three (resp. two) specific choices of Att, Btt coefficients lead to convergence
(notably Guest and Saunders and Roothaan). The results for the Pyridine−Cu2+ system (not reported)
are qualitatively the same (only Guest and Saunders, Euler, Roothaan and Canonical II choices of Att,
Btt coefficients lead to convergence of GAMESS DIIS or of our DIIS implementation).

Remarkably, forcing DIIS (resp. SOSCF) from the first iterations is needed in GAMESS, as the DIIS
residual (resp. gradient norm) is initially much higher than the default threshold for DIIS (resp. SOSCF)
activation. Let us underline that acceleration methods such as DIIS, are designed to accelerate local
convergence (i.e. convergence when starting close enough to a local minimum). They are now well-
understood mathematically in this setting [Chu+21]. In contrast, the fact that DIIS can stabilize SCF
iterations starting from core initial guess in some cases (this is not always true) remains unexplained to
our knowledge.

The SOSCF second-order method converges whatever the choice of Att, Btt coefficients (except one,
namely Canonical II, for the Pyridine−Fe2+ system) from the core guess, although always in more than
200 iterations. Forcing DIIS (resp. SOSCF) from the first iterations is needed in GAMESS, as the DIIS
residual (resp. gradient norm) is initially much higher than the default threshold for DIIS (resp. SOSCF)
activation.

Algorithms based on the gnew iteration function. As shown in the last two columns of Table
2.3, the DIIS algorithm based on the iteration function gnew and the residual function f , as well as
the ODA algorithm 3, provide robust schemes for all systems, except for the case of porphyrin model-
Fe2+ with gnew+DIIS. Forcing a restart of the DIIS yields convergence in that case. Note that our current
implementation was built as a proof-of-concept. Our method could potentially benefit from a more refined
choice of preconditioning for the resolution of the subproblem (2.3.9), or from an adaptive depth DIIS
approach, as introduced in [Chu+21], which we defer to future investigations.

For the other cases, the gnew+DIIS method is competitive with the converging standard SCF schemes
in terms of iterations. The gnew+DIIS require more computational time than the gA,B standard SCFs,
since each iteration involves the approximate resolution of the optimization problem (2.3.9). This is
compensated by the absence of parameters in this method, and the convergence across almost all studied
cases.

While the ODA method is very effective to reach the attraction basin of a local minimizer, it is very
slow to converge to chemical accuracy. As the iterations approach a local minimum, the coefficient tk of
the ODA convex combination consistently equals 1, effectively reducing ODA to a simple SCF with gnew
map and no DIIS. A good compromise is to transition from ODA to gnew+DIIS when sufficiently close to a
local minimum (Table 2.5), mimicking the efficient EDIIS+DIIS method of [KSC02] in the RHF case. This
transition can occur when the energy gradient reaches a specified tolerance, or when the ODA coefficient
tk takes the value 1 repeatedly. We chose the first option with threshold 10−1 in our implementation.
Notably, applying ODA before gnew+DIIS seem to allow to target a lower local minimum, as appearing
in appendix, Table 2.6.
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GAMESS [Sch+93] This work
gA,B (2.3.3) - based methods gnew (2.3.8) - based methods

Att, Btt (see Table 2.1) SOSCF DIIS DIIS DIIS ODA
Pyridine–Fe2+

Guest and Saunders X(244;313) X(12;37) X(9;59)

X(8;55) X(4;+1000)

Roothaan X(212;263) X(28;109) X(13;145)
Euler X(218;265) X(28;95)

Mc Weeny X(204;254)
Binkley X(262;352)
Faegri X(235;278)

Davidson X(230;273)
Canonical I X(262;329)
Canonical II

Pyridine–Fe3+

Guest and Saunders X(236;290) X(16;132) X(11;193)

X(8;54) X(8;+1000)

Roothaan X(221;263) X(19;72) X(17;116)
Euler X(227;277) X(41;181) X(7;112)

Mc Weeny X(217;273)
Binkley X(216;272)
Faegri X(323;374)

Davidson X(259;328)
Canonical I X(246;317)
Canonical II X(236;305)

Porphyrin model–Fe2+

Guest and Saunders X(202;215) X(15;22) X(18;26)

X(10,+1000)

Roothaan X(203;219) X(21;34) X(34;49)
Euler X(202;218)

Mc Weeny X(202;219)
Binkley X(203;213)
Faegri X(203;216)

Davidson X(203;221)
Canonical I X(203;212)
Canonical II X(294;346)

Table 2.3 – Convergence results starting from core initial guess (6-31G basis set). The table follows the
conventions detailed in the introduction to Section 2.4. The DIIS residual function f is the one defined
in (2.3.14). The DIIS maximum depth parameter mmax is fixed to 10 (default value in GAMESS). The
notation (napproach;ncv) means that napproach iterations are needed to reach 0.1 Ha accuracy, while ncv
iterations are necessary to reach microHartree accuracy.
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GAMESS [Sch+93] This work
gA,B (2.3.3) - based methods gnew (2.3.8) - based methods

Att, Btt (see Table 2.1) SOSCF DIIS DIIS DIIS ODA
Pyridine–Fe2+

Guest and Saunders X(78) X(82) X(100)

X(92) X(+1000)

Roothaan X(83) X(255) X(212)
Euler X(40) X(59) X(68)

McWeeny X(42) X(105) X(271)
Binkley X(106)
Faegri X(106)

Davidson X(87)
Canonical I X(88)
Canonical II X(42)

Pyridine–Fe3+

Guest and Saunders X(78) X(178) X(187)

X(142) X(+1000)

Roothaan X(88) X(185) X(139)
Euler X(50)

McWeeny X(88)
Binkley X(93)
Faegri X(92)

Davidson X(94)
Canonical I X(95)
Canonical II X(54)

Porphyrin model–Fe2+

Guest and Saunders X(22) X(17)

X(25) X(+1000)

Roothaan X(23) X(37) X(52)
Euler X(29) X(25) X(72)

Mc Weeny X(36) X(32) X(187)
Binkley X(23)
Faegri X(22)

Davidson X(21)
Canonical I X(24)
Canonical II X(29)

Table 2.4 – Convergence results starting an extended Hückel initial guess (6-31G basis set). The table
follows the conventions detailed in the introduction to Section 2.4. The DIIS residual function f is the one
defined in (2.3.14). The DIIS maximum depth parameter mmax is fixed to 10 (default value in GAMESS).
The number of iterations in parentheses is the one needed to reach microHartree accuracy.

ODA + gnew-DIIS (2.3.8)
Initial guess Pyridine–Fe2+ Pyridine–Fe3+ Porphyrin model–Fe2+

Core X(8,92) X(7,83) X(10,18)
Extended Hückel X(60) X(144) X(28)

Table 2.5 – Convergence results by starting with ODA iterations and switching to DIIS when the residual
norm reaches a tolerance of 10−2. The DIIS depth parameter mmax is fixed to 10 (default value in
GAMESS). The number of iterations needed to reach convergence at microHartree precision is specified
in parenthesis

2.4.3.2 Local convergence

We now compare the different algorithms starting from an extended Hückel initial guess, whose energy
is about 1 to 2 Ha above the ground state for our test cases in the GAMESS implementation, and 20 to 60
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Ha for PySCF. The difference between the two guesses is most notable for the Porphyrin model − Fe2+

system.

Algorithms based on gA,B iteration functions. Comparing the results in Tables 2.3 and 2.4, we
observe that DIIS algorithms as implemented in GAMESS barely benefit from a better initial guess. Four
different choices of Att, Btt coefficients lead to convergence for Pyridine–Fe2+ and Porphyrin model −
Fe2+ systems (two for Pyridine–Fe3+) for DIIS.

Again, the SOSCF second-order method converges whatever the choice of Att, Btt coefficients, in less
than 100 iterations (thanks to the improved starting guess) except for two specific choices of coefficients
(106 iterations needed with Binkley and Faegri coefficients, for Pyridine–Fe2+ system).

Algorithms based on the gnew iteration function. Both the DIIS and the ODA converge for all the
four systems. As in the previous case, the ODA algorithm is very slow to converge to chemical accuracy
and ODA followed by gnew+DIIS provides satisfactory convergence results.

2.5 Conclusion and perspectives
In this article, we have provided a geometrical derivation of the ROHF equations in the density matrix
and molecular orbital formalisms. A fundamental aspect of that derivation is, for both formalisms, the
characterization of the tangent space of the manifold of ROHF states at a critical point of the ROHF energy
functional, as well as its orthogonal complement (for the Frobenius inner product). This analysis lead us to
introduce a new, parameter-free, iteration function gnew (see Eq. (2.3.8)), as an alternative to Roothaan-
like iteration functions gA,B based on the construction of a (non-physical) effective Hamiltonian HA,B ,
where A = (Add, Ass, Add) and B = (Bdd, Bss, Bdd) collect six real empirical parameters. An important
conceptual difference of the proposed new SCF algorithm with respect to previous works is that it is not
based on the usual technique of diagonalization of Fock-like Hamiltonians which can lead to numerical
instabilities when the Aufbau principle is not fulfilled. Thanks to its geometrical formulation, the present
algorithm avoids the ambiguity of the orbital energies for which the Koopman theorem does not apply in
the case of the ROHF framework.

The numerical results we report seem to indicate that the DIIS algorithm based on the usual gAB frame-
work with the Guest and Saunders (Att = Btt = 1

2 ) and Roothaan (Att =
(
− 1

2 ,
1
2 ,

3
2
)
, Btt =

( 3
2 ,

1
2 ,−

1
2
)
)

iteration functions are quite robust and converge in a reasonable number of iterations, even when starting
from the core initial guess. However, these observations, made on a small number of test cases (the ones
reported in this paper plus a dozen of other challenging cases), do not guarantee that this algorithm will
perform well for all systems and basis sets. Remarkably, the DIIS acceleration has to be enabled from the
first iteration to guaranty convergence, which does not correspond to the default setting in most quantum
chemistry codes, where DIIS is activated only when close enough to a local minimum.

The numerical results reported here based on our new parameter-free iteration function gnew are
encouraging as the latter converge for all but a single systems tested in this work, which involves different
open-shell transition metal ions interacting with aromatic ligands. The algorithms based on the parameter-
free iteration function gnew may then provide a useful alternative to the gA,B iteration functions for very
challenging systems. In particular, the ODA (involving gnew) seems to be extremely robust and efficient
in the early iterations, to reach the attraction basin of a local minimizer. Using ODA for the first few
iterations, followed by gnew+DIIS is a good candidate for a robust black-box SCF routine.
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Supplementary Material for reproductibility
The Supplementary Material contains the atomic coordinates of the benchmark systems studied in the
article. The research code used to produce the numerical data is available at https://github.com/
LaurentVidal95/ROHFToolkit.

Appendix A: First-order optimality conditions in MO formalism.
As seen in Section 2.2, the manifold of ROHF states in MO formalism is the quotient manifold

MMO = St(No;RNb)/(ONd
× ONs

).

In DM formalism, MDM is embedded in VDM, so that the tangent space of MDM at a point x can be
directly identified with a subspace of VDM (see Fig. 2.2). Unfortunately, this is not the case for the
quotient MMO. Following [AMS08], a way around the problem (valid for general quotient manifolds) is to
identify the tangent space TJCoKMMO at given equivalence class JCoK with a subspace of TCoSt(No;RNb),
called the horizontal tangent space at Co to the manifold St(No;RNb), and denoted T h

Co
St(No;RNb). We

therefore start by computing the expression of the tangent spaces TCo
St(No;RNb).

Tangent spaces of St(No;RNb). Let Co = (Cd, Cs) ∈ St(No;RNb). The orthonormality condition
Co

TCo = INo translates on Cd and Cs as CTd Cd = INd
, CTs Cs = INs and CTd Cs = 0. This writes at first

order for a perturbation z = (Dd|Ds) ∈ RNb×No

CTd Dd +DT
d Cd = 0 (1)

CTs Ds +DT
s Cs = 0 (2)

CTd Ds +DT
d Cs = 0 (3).

Let Cv be the orthogonal complement of Co such that C = (Cd|Cs|Cv) ∈ ONb
, and let us decompose Dd

and Ds in the basis C:
Dd = Cd(Dd

d)T + Cs(Ds
d)T + Cv(Dv

d)T
Ds = Cd(Dd

s)T + Cs(Ds
s)T + Cv(Dv

s )T . (2.5.1)

Then from (1) and (2), there exists Ad ∈ RNd×Nd

skew and As ∈ RNs×Ns

skew such that (Dd
d)T = Ad and

(Ds
s)T = As. Now (3) writes

CTd (CsAs + Cd(Dd
s)T + Cv(Dv

s )T ) + (−AdCd +Ds
dC

T
s +Dv

dC
T
v )Cs = Ds

d + (Dd
s)T = 0

⇔ Ds
d = −(Dd

s)T .

We deduce that for all Co = (Cd|Cs), the tangent space TCoSt(No;RNb) is made of all z = (Dd|Ds) ∈ RNb×No

such that
Dd = CdAd + CsX

T + CvY
T and Ds = −CdX + CsAs + CvZ

T (2.5.2)

where X ∈ RNd×Ns , Y ∈ RNd×Nv and Z ∈ RNs×Nv . This also abbreviate as

z = C

 Ad −X −Y
XT As −Z
Y T ZT 0

( INo

0

)
. (2.5.3)

Horizontal tangent space. Now let π : St(No;RNb) → MMO be the canonical projection on MMO

∀Co ∈ St(No;RNb) π(Co) = JCoK.

We define the vertical tangent space T v
Co

St(No;RNb) at Co as

T v
Co

St(No;RNb) = TCo
π−1(JCoK).
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and the horizontal tangent space T h
Co

St(No;RNb) as its orthogonal complement for the MO scalar product
〈Co|C ′

o〉 = Tr(CTo C ′
o):

TCoSt(No;RNb) = T h
Co

St(No;RNb) ⊕ T v
Co

St(No;RNb).

Intuitively, T h
Co

St(No;RNb) only contains the directions of TCoSt(No;RNb) that allow escape the equiva-
lence class JCoK, so that one has the important property [AMS08]

TJCoKMMO ' T h
Co

St(No;RNb). (2.5.4)

Following the same procedure as for TCo
St(No;RNb) and TxMDM, we can show that

T h
Co

St(No;RNb) =
{

(CsXT + CvY
T | − CdX + CvZ

T ) where X ∈ RNd×Ns , Y ∈ RNd×Nv , Z ∈ RNs×Nv
}

(2.5.5)

T v
Co

St(No;RNb) =
{

(CdAd|CsAs) where Ad ∈ RNd×Nd

skew , As ∈ RNs×Ns

skew

}
(2.5.6)

First order optimality conditions. From (2.5.4) and (2.5.5) the first order optimality conditions
write in MO formalism as

∇E(Co∗) ∈ T h
Co∗

St(No;RNb)⊥. (2.5.7)

A straigthforward computation shows that for all Co = (Cd|Cs), the ambiant gradient for the standard
Frobenius scalar product writes

∇E(Co) = (4FdCd|4FsCs). (2.5.8)

It now remains to find T h
Co

M⊥
MO. Once again consider Co = (Cd|Cs) ∈ St(No;RNb) and Cv be such that

C = (Cd|Cs|Cv) ∈ ONb
. For all W = (Wd|Ws) ∈ VMO, decomposing W on C as in (2.5.1) yields

W ∈ T h
Co

St(No;RNb)⊥ ⇔
{

Tr(XT (W s
d − (W d

s )T ) + Y TW v
d + ZTW v

s ) = 0,
∀X ∈ RNd×Ns , Y ∈ RNd×Nv , Z ∈ RNs×Nv

⇔
{
W v
d = W v

s = 0
W s
d = (W d

s )T .

⇔
{

∃Md ∈ RNd×Nd , Ms ∈ RNs×Ns , X ∈ RNd×Ns

such that W = (CdMT
d + CsX

T |CdX + CsM
T
s ).

Using (2.5.7) and (2.5.8), there exists Md ∈ RNd×Nd , Ms ∈ RNs×Ns and X ∈ RNd×Ns such that

4Fd∗Cd∗ = Cd∗M
T
d + Cs∗X

T and 4Fs∗Cs∗ = Cd∗X + Cs∗M
T
s . (2.5.9)

Multiplying both expression by CTd or CTs we obtain

Md = 4CTd∗Fd∗Cd∗, Ms = 4CTs∗Fs∗Cs∗, X = 2CTd∗(Fd∗ + Fs∗)Cs∗ (2.5.10)

so that the optimality conditions finally write
Fd∗Cd∗ = Cd∗

(
CTd∗Fd∗Cd∗

)
+ 1

2Cs∗
(
CTs∗(Fd∗ + Fs∗)Cd∗

)
Fs∗Cs∗ = Cs∗

(
CTs∗Fs∗Cs∗

)
+ 1

2Cd∗
(
CTd∗(Fd∗ + Fs∗)Cs∗

)
.

(2.5.11)

Appendix B: List of local minima
We provide here the energies at convergence for each system, algorithm, and initial guess. Table 2.6
corresponds to the energies associated to the results of Table 2.3 while Table 2.7 corresponds to the
energies associated to the results of Table 2.4. Finally, Table 2.8 corresponds to the energies reached by
the ODA + gnew+DIIS method picture in Table 2.5
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GAMESS [Sch+93] This work
gA,B (2.3.3) - based methods gnew (2.3.8) - based methods

Att, Btt (see Table 2.1) SOSCF DIIS DIIS DIIS ODA
Pyridine–Fe2+

Guest and Saunders -1508.134652 -1508.134652 -1508.014203

-1508.014203 -1508.131670

Roothaan -1508.016536 -1508.134040 -1508.131670
Euler -1508.016536 -1508.016536

Mc Weeny -1508.016536
Binkley -1508.134652
Faegri -1508.016536

Davidson -1508.016536
Canonical I -1508.134652
Canonical II

Pyridine–Fe3+

Guest and Saunders -1507.414473 -1507.414091 -1507.411509

-1507.407360 -1507.411509

Roothaan -1507.414473 -1507.343997 -1507.411889
Euler -1507.414473 -1507.414097 -1507.411509

Mc Weeny -1507.414473
Binkley -1507.414473
Faegri -1507.414473

Davidson -1507.414473
Canonical I -1507.414473
Canonical II -1507.414473

Porphyrin model–Fe2+

Guest and Saunders -1940.163309 -1940.513025 -1940.510151

-1940.510191

Roothaan -1940.163309 -1940.335945 -1940.647646
Euler -1940.163309

Mc Weeny -1940.163309
Binkley -1939.977138
Faegri -1939.977138

Davidson -1939.977138
Canonical I -1940.075387
Canonical II -1940.267466

Table 2.6 – Energies at convergence starting from a core initial guess with 6-31G basis set. The table
follows the conventions detailed in the introduction to Section 2.4. The notation DIIS refers to a DIIS
method using f as residual function. The DIIS depth parameter mmax is fixed to 10 (default value in
GAMESS). All energies are expressed in Hartrees.
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GAMESS [Sch+93] This work
gA,B (2.3.3) - based methods gnew (2.3.8) - based methods

Att, Btt (see Table 2.1) SOSCF DIIS DIIS DIIS ODA
Pyridine–Fe2+

Guest and Saunders -1508.134652 -1508.013967 -1508.132280

-1508.131670 -1508.131670

Roothaan -1508.016536 -1507.967145 -1508.131671
Euler -1508.134652 -1508.134652 -1508.002054

Mc Weeny -1508.134652 -1508.134652 -1508.132280
Binkley -1508.134652
Faegri -1508.134652

Davidson -1508.134652
Canonical I -1508.134652
Canonical II -1508.134652

Pyridine–Fe3+

Guest and Saunders -1507.414473 -1507.409935 -1507.411510

-1507.411509 -1507.411509

Roothaan -1507.414473 -1507.409935 -1507.411889
Euler -1507.357499

Mc Weeny -1507.357499
Binkley -1507.414473
Faegri -1507.414473

Davidson -1507.414473
Canonical I -1507.414473
Canonical II -1507.357499

Porphyrin model–Fe2+

Guest and Saunders -1940.406548 -1940.513025

-1940.510191 -1940.510191

Roothaan -1940.406548 -1940.335945 -1940.510151
Euler -1940.385615 -1940.513025 -1940.654531

Mc Weeny -1940.650207 -1940.513025 -1940.527432
Binkley -1940.513025
Faegri -1940.513025

Davidson -1939.977138
Canonical I -1940.513025
Canonical II -1940.650207

Table 2.7 – Energies at convergence starting from an extended Hückel initial guess with 6-31G basis set.
The table follows the conventions detailed in the introduction to Section 2.4. The notation DIIS refers to
a DIIS method using f as residual function. The DIIS depth parameter mmax is fixed to 10 (default value
in GAMESS). All energies are expressed in Hartrees.

ODA + gnew-DIIS (2.3.8)
Initial guess Pyridine–Fe2+ Pyridine–Fe3+ Porphyrin model–Fe2+

Core -1508.131670 -1507.411509 -1940.510191
Extended Hückel -1508.131670 -1507.411509 -1940.510191

Table 2.8 – Energies at convergence obtained with a few iterations of ODA, followed by gnew+DIIS. The
algorithm transitions from ODA to DIIS when the residual norm reaches a tolerance of 10−2. The DIIS
depth parameter mmax is fixed to 10 (default value in GAMESS). All energies are expressed in Hartrees.
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Chapter 3

Optimization of atomic orbital basis sets

This chapter has been published in the proceeding [LV1]:

Eric Cancès, Geneviève Dusson, Gaspard Kemlin, and Laurent Vidal. “On basis set optimisation in
quantum chemistry”. In: ESAIM: Proceedings and Surveys 73 (2023), pp. 107–129

Abstract In this chapter we propose general criteria to construct optimal atomic centered basis
sets in quantum chemistry. We focus in particular on two criteria, one based on the ground-state one-
body density matrix of the system and the other based on the ground-state energy. The performance of
these two criteria are then numerically tested and compared on a parametrized eigenvalue problem, which
corresponds to a one-dimensional toy version of the ground-state dissociation of a diatomic molecule.
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3.1 Introduction
In quantum chemistry, a central problem is the computation of the electronic ground-state (GS) of a
given molecular system. For many-electron systems, it is not possible to solve the N -body Schrödinger
equations and most calculations are thus based on variational (e.g. Hartree–Fock) or non-variational (e.g.
coupled cluster) approximations of the latter, or on Kohn–Sham density functional theory (DFT). For all
these models, the continuous equations (e.g. a nonlinear elliptic eigenvalue problem in the Hartree–Fock
or Kohn–Sham settings) are discretized into a finite-dimensional approximation space. Approximation
spaces constructed from atomic orbitals (AO) basis sets [HJO14; Ols21] have many advantages and are
therefore the most common choice in the quantum chemistry community. An AO basis set consists of a
collection of functions χ = (χzµ)z∈CE, 16µ6nz

where CE is a set of atomic numbers (e.g. CE = {1, . . . , 92}
for the natural chemical elements of the periodic table), nz a positive integer depending on the electronic
shell-structure of the chemical element with atomic number z, and χzµ ∈ H1(R3) a fast decaying function
centered at the origin called an atomic orbital. Consider an atomic configuration ω consisting of M nuclei
with nuclear charges z1, . . . , zM (in atomic units) and positions R1, . . . ,RM in the three dimensional
physical space. If the AO basis set χ is chosen by the user, the (spatial component of the) one-electron
finite-dimensional space in which the chosen electronic structure model of a molecular system with atomic
configuration ω is discretized is

Xω := span(χz1
1 (· − R1), . . . , χz1

nz1
(· − R1), . . . , χzM

1 (· − RM ), . . . , χzM
nzM

(· − RM )).

The accuracy of the approximation therefore crucially depends on the quality of the AO basis set. The
main advantage of AO basis sets is that only a small number of AO per atoms (typically a dozen) are
necessary to obtain a relatively accurate result on most quantities of interest. This is in sharp contrast
with standard discretization methods used in the simulation of partial differential equations such as finite-
element methods. To make connection with discretization methods used in mechanical and electrical
engineering, AO basis set discretization methods can be considered as spectral methods [Can+07], and
share common features with the modal synthesis method [ICM96b, Chapter 7], [ICM96a]. A drawback
of AO basis sets is that conditioning quickly blows up when increasing the size of the basis by including
polarization and diffuse basis functions, a problem known as overcompleteness [Löw70]. The numerical
errors due to this large condition number can deteriorate the accuracy of the computed solutions and/or
significantly increase computational times. AO basis sets can therefore not be systematically improved in
a straightforward way.

In the early days, AOs were Slater functions [Sla30], with exponential decay and a cusp at the origin. It
was then realized by Boys [BE50] in 1950 that it was much more efficient from a computational viewpoint to
use Gaussian-type orbitals (GTO), that are linear combinations of polynomials times Gaussian functions.
Indeed the multi-center overlap, kinetic and Coulomb integrals
ˆ
R3
χza
i (r − Ra)χzb

j (r − Rb) dr,
ˆ
R3

∇χza
i (r − Ra) · ∇χzb

j (r − Rb) dr,
ˆ
R3

χza
i (r − Ra)χzb

j (r − Rb)
|r − Rk|

dr,
ˆ
R3×R3

χza
i (r − Ra)χzb

j (r − Rb)χzc

k (r′ − Rc)χzd

` (r′ − Rd)
|r − r′|

dr dr′,

arising in discretized electronic structure models can then be computed analytically by means of explicit
calculations and recursion formulas.

However, individual Gaussian function poorly describes the cusps of the bound states electronic wave-
functions at nuclear positions. Contracted Gaussians [McW50], that are linear combinations of Gaussians
with different variances, were quickly introduced as they overcome this deficiency. Several classes of GTO
basis sets have been proposed since the 50’s: STO-ng basis sets [HSP69] were built as the contraction of n
Gaussians that fit Clementi STO SCF AOs in an L2 least-squares sense [Ste69]. It was quickly realized that
better GTO basis sets could be obtained by minimizing atomic Hartree–Fock ground state energy. This
approach led to the split-valence basis sets (e.g. 6-31G) with core and valence orbitals being approximated
differently, developed by Pople et al. [BPH80]. Basis sets better suited for correlated electronic structure
methods were then introduced, notably Atomic Natural Orbitals (ANO) [AT87] and Dunning basis sets
[Dun89]. ANO basis sets are built by selecting occupied and virtual orbitals from Hartree–Fock and natural
orbitals from correlated computations of atomic systems. Dunning bases provide a (finite) hierarchy of
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bases obtained by consistently increasing the number of basis functions corresponding to different angular
momenta. This optimization strategy yields the so-called correlation consistent cc-pVXZ basis sets, which
are, with their augmented version, still commonly used nowadays.

Mathematical studies proving convergence rates or proposing systematic enrichment of GTO basis sets
are so far quite limited. The approximability of solutions to electronic structure problems by Gaussian
functions was studied in [Kut94], and later on in [SY17; Sha20]. An a priori error estimate on the
approximation of Slater-type functions by Hermite and even-tempered Gaussian functions was derived
in [BCS14]. A construction of Gaussian bases combined with wavelets was proposed on a one-dimensional
toy model in [Pha17].

Commonly used Pople and Dunning GTO basis sets were optimized from atomic configuration energies
and Hartree–Fock (and/or natural) atomic orbitals. Let us also mention [SPAS96; DCM20] where system
specific optimization of AO bases has been investigated, however focusing on specific models (e.g. one
electron periodic Hamiltonian) or optimization criteria. In this article, we propose a different approach,
which is adaptable to any criterion one might be interested in, and involves molecular configurations. In
Section 3.2, we introduce an abstract mathematical framework for the construction of optimal AO basis
sets, based on the choices of

1. a set of admissible atomic configurations Ω;

2. a probability measure P on Ω;

3. a set of admissible AO basis sets B;

4. a criterion j(χ, ω) quantifying the error between the exact values of the quantities of interest when
the system has atomic configuration ω ∈ Ω – for the continuous model under consideration – and
the ones obtained after discretization in the basis set χ ∈ B.

We also provide examples of possible choices of Ω, P, B, and j. As a proof of concept (Section 3.3),
we apply this strategy to a simple toy model of a 1D homonuclear diatomic “molecule” with two 1D
non-interacting spinless “electrons”, which allows for extremely accurate reference calculations. Finally,
we present numerical results in Section 3.4, where we compare the efficiency of the so-optimized AO bases
compared to AO basis constructed from the occupied and unoccupied orbitals of the isolated “atom”.

3.2 Optimization criteria

3.2.1 Abstract framework
We start by formulating the problem of basis set optimization in an abstract setting. The procedure can
be divided into four steps.

First, we select the set Ω of all possible atomic configurations we are a priori interested in. For
instance, depending on the foreseen applications, one can consider the set of all possible finite atomic
configurations containing only hydrogen, nitrogen, carbon, and oxygen atoms, or the set of all possible
periodic arrangements of chemical elements with less than 20 atoms per unit cell.

Second, we equip Ω with a probability measure P in order to allow for different configurations to
have different weights in the optimization procedure. We will see later that our method requires the
computation of very accurate reference solutions for all ω’s in the support of P. For practical reasons we
therefore need to choose P of the form

P =
Nc∑
n=1

βnδωn
, (3.2.1)

where {ω1, . . . , ωNc} is a finite (not too large) subset of Ω, δωn the Dirac mass at ωn, and {β1, . . . , βNc} are
positive weights such that

∑Nc
n=1 βn = 1. Assume that we are solely interested in reproducing accurately

the dissociation curve of the HF (Hydrogen Fluoride) diatomic molecule. Then the set Ω should be
identified with the interval (0,+∞), and a configuration ω ∈ Ω with the H−F interatomic distance
R ∈ (0,+∞), and P should be a probability measure on the interval (0,+∞). The selection of the ωn’s
and βn’s can be done in various ways. An option is to
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i) choose a continuous probability distribution P on (0,+∞) on the basis of chemical arguments, putting
little weight on usually unimportant very small interatomic distances, more weight on interatomic
distances close to the equilibrium distance (d ' 0.92 Å), sufficient cumulated weight on very large
interatomic distance to correctly reproduce the dissociation energy, and more or less weight on
intermediate interatomic distances in the range 2−8 Å, depending on its importance for the targeted
application;

ii) fix the number Nc according to the available computational means;

iii) compute the ωn’s and βn’s using e.g. quantization algorithms [MSS21] possibly based on optimal
transport or clustering algorithms [Pag15].

Third, we select the set B of admissible AO basis sets. Restricting ourselves to the framework of
GTOs, this can be done by choosing, for each chemical element arising in Ω, the number, symmetries,
and contraction patterns of the Gaussian polynomials of the AO associated with this particular element.
In this case, B has the geometry of a convex polyedron of Rd.

Given an atomic configuration ω ∈ Ω and an AO basis set χ ∈ B, we denote by χω the one-electron
finite-dimensional space obtained by using the AO basis set χ to describe the electronic structure of a
molecular system with atomic configuration ω and an arbitrary number N of electrons.

The fourth and final step consists in choosing a criterion j(χ, ω) quantifying the quality of the results
obtained when using the basis set χ ∈ B to compute the electronic structure of a molecular system with
atomic configuration ω. The choice of the function

j : B × Ω → R+

depends on the quantity of interest (QoI) to the user, and on the respective weights of these quantities in
the case of multicriteria analyses. For instance, if one focuses on the ground-state energy of the electrically
neutral molecular system, a natural criterion is

jE(χ, ω) := |Eω − Eχω |2 , (3.2.2)

where Eω is the exact ground-state energy of the neutral system with atomic configuration ω for the
chosen continuous model (e.g. Hartree–Fock, MCSCF, Kohn–Sham B3LYP. . . ) and Eχω the ground-state
energy obtained with the model discretized in the AO basis set χ. Note that the absolute value of the
difference is squared to make jE differentiable. Another possible choice is to use a criterion based on the
one-body reduced density matrices (1-RDM), for instance

jA(χ, ω) := −Tr
(
ΠA
χω
γωΠA

χω
A
)
, (3.2.3)

where A is a given self-adjoint, positive, definite operator on the one-particle state space H with form
domain Q(A), γω the exact ground-state 1-RDM of the neutral system with atomic configuration ω for
the chosen continuous model, and ΠA

χω
: Q(A) → Xω ⊂ H the orthogonal projector on Xω for the inner

product A on Q(A). If A = IH, then the Q(A) = H and ΠA
χω

is the orthogonal projector on Xω for the
inner product of H. If A = (1 − ∆), then Q(A) is the Sobolev space H1(R3), and ΠA

χω
is the orthogonal

projector on Xω for the H1-inner product. Diagonalizing γω as

γω =
∑
j

nω,j |ψω,j〉〈ψω,j |, 0 6 nω,j 6 1, 〈ψω,j |ψω,j′〉 = δjj′ ,

where the nω,j ’s are the natural occupation numbers (NON) and ψω,j ’s the natural orbitals (NO) for the
chosen continuous model of the neutral system with atomic configuration ω, it holds

jA(χ, ω) = −
∑
j

nω,j‖ΠA
χω
ψω,j‖2

Q(A).

Minimizing jA(χ, ω) thus amounts to maximizing the NON-weighted sum of the Q(A)-norms of Q(A)-
orthogonal projections of the NON on the discretization space Xω. Other criteria may include errors on
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molecular properties, or a weighted sum of several elementary criteria, each of them targeting a specific
property. The criterion should be chosen according to the intended application.

The aggregated criterion to be optimized then reads as an integral over the configuration space Ω with
respect to the probability measure P

J(χ) :=
ˆ

Ω
j(χ, ω)dP(ω), (3.2.4)

and the problem of basis set optimization can be formulated as

find χ0 ∈ argmin
χ∈B

J(χ)

In the following, JE and JA denote the evaluation of the criterion (3.2.4) with j = jE and j = jA
respectively.
Remark 3.2.1 (Reference solutions). The evaluation of criteria JE and JA hinges on the knowledge of
exact GS energy Eω or 1-RDM γω for ω in the support of P. In practice, these data can be approximated
by very accurate off-line reference computations for a small, wisely chosen, sample of configurations ω.
This is the reason why the probability measure P can only be a finite weighted sum of Dirac distributions,
as defined in (3.2.1).

3.3 Application to 1D toy model
In this section, we focus on a linear one-dimensional toy model, mimicking a homonuclear diatomic
molecule.

3.3.1 Description of the model
Let us consider a system of two 1D point-like “nuclei” and two 1D spinless non- interacting quantum
“electrons”. The one-particle state space is then H = L2(R) and the configuration space Ω = (0,+∞). In
this section, a configuration of Ω will be labelled by the positive real number a > 0 such that the nuclei
are located at −a and a. The one-particle Hamiltonian at configuration a then is

Ha = −1
2

d2

dx2 + Va, (3.3.1)

where Va models the nuclei-electron interaction. We choose Va to be a double-well potential with minima
at −a and +a, defined by

∀ x ∈ R, Va(x) = 1
8a2 + 4(x− a)2(x+ a)2. (3.3.2)

Several considerations led us to define the potential as such. First, Va is designed so that i) each Ha

admits a non-degenerate ground-state of energy Ea, and ii) the function a 7→ Ea has the shape of the
ground-state dissociation curve of a homonuclear diatomic molecule with atoms at −a and +a. Since the
two “electrons” do not interact, the ground-state energy Ea and density matrices γa ∈ G2 are given by

Ea = Tr (Haγa) = min
γ∈G2

Tr (Haγ) , (3.3.3)

where
G2 :=

{
γ ∈ L(L2(R)), γ2 = γ = γ∗, Tr(γ) = 2

}
,

L(L2(R)) denoting the space of bounded linear operators on L2(R). The existence and uniqueness of
the solution to problem (3.3.3) can be shown by elementary arguments of functional analysis and spectral
theory that we do not detail here. Second, V0(x) = 1

4x
4 so that (3.3.1) corresponds to the quartic oscillator,

for which we have reference numerical solutions (e.g. [Bli19]). Third, Va behaves like x2/2 around ±a for
large values of a and Va(0) ∼ a4/8 → +∞ when a → +∞. Therefore, in the limit a → +∞, problem
(3.3.3) is similar to two decoupled quantum harmonic oscillators centered in −a and +a whose bound
states are all explicitly known. For the sake of illustration, we display in Figure 3.1 the potential Va for
two different values of a.
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Figure 3.1 – x 7→ Va(x) for a = 1 and a = 5.

In practice, it is convenient to compute γa and Ea from the lowest two eigenvalues λa,1 < λa,2 of Ha

and an associated pair (ϕa,1, ϕa,2) of orthonormal eigenvectors{
Haϕa,i = λa,iϕa,i, i = 1, 2
〈ϕa,i|ϕa,j〉 = δij , i, j = 1, 2,

(3.3.4)

〈·|·〉 denoting the L2 inner product. We indeed have

Ea = λa,1 + λa,2 and γa = |ϕa,1〉〈ϕa,1| + |ϕa,2〉〈ϕa,2|. (3.3.5)

The evaluation of criteria JA and JE requires the computation of reference ground -state density
matrices or energies, which amounts to find very accurate solutions of (3.3.4) for the configurations ak in
the support of the chosen atomic probability measure

P =
Nc∑
n=1

βnδan , 0 < a1 < a2 < · · · < aNc , βn > 0,
Nc∑
n=1

βn = 1. (3.3.6)

We chose to compute these reference data using a 3-point finite-difference (FD) scheme on a large enough
interval [−xmax, xmax] discretized into a uniform grid with Ng grid points:

xj = −xmax + jδx, 1 6 j 6 Ng, δx = 2xmax

Ng + 1 .

We then impose homogeneous Dirichlet boundary conditions at −xmax and xmax. The parameter xmax
is chosen such that xmax = amax + rmax, where amax = max(supp(P)) and rmax > 0 is is the radius
beyond which atomic densities are zero at machine (double) precision. Note that this numerical scheme is
independent of the configuration a. The FD discretization of problem (3.3.9) gives rise to the eigenvalue
problem {

HFD
a ϕFDa,i = λFD

a,i ϕ
FD
a,i i = 1, 2

δx
(
ϕFD
a,i

)T
ϕFD
a,j = δij ,

(3.3.7)

where HFD
a ∈ RNg×Ng

sym is a real symmetric matrix of size Ng ×Ng, and the reference data are obtained as

EFD
a = λFD

a,1 + λFD
a,2 and PFD

a = ϕFD
a,1
(
ϕFD
a,1
)T + ϕFD

a,2
(
ϕFD
a,2
)T ∈ RNg×Ng

sym , (3.3.8)

where PFD
a can be interpreted as an approximation of the matrix γa(xj , xj′) containing the values of the

(integral kernel of the) density matrix γa at the grid points.
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3.3.2 Variational approximation in AO basis sets
For any given configuration a ∈ R+ and basis χ = {χµ}16µ6Nb

∈ B, problem (3.3.4) is solved using a
Galerkin method with the basis χa = {χa,µ}16µ62Nb

composed of two copies of the basis χ, the first one
translated to a, and the second one to −a:

χa,1 = χ1(· − a), . . . , χa,Nb
= χNb

(· − a), χa,Nb+1 = χ1(· + a), . . . , χa,2Nb
= χNb

(· + a).

Defining the Hamiltonian matrix

Hχ
a =

(〈
χa,µ

∣∣∣∣(−1
2

d2

dx2 + Va

)∣∣∣∣χa,ν〉)
16µ,ν62Nb

and the overlap matrix
Sχa = (〈χa,µ|χa,ν〉)16µ,ν62Nb

,

the discretization of problem (3.3.4) in the AO basis set χ then reads as the generalized eigenvalue problem:
find

(
Cχa,i, λ

χ
a,i

)
∈ R2Nb × R, i = 1, 2 such that{

Hχ
aC

χ
a,i = λχa,iS

χ
aC

χ
a,i i = 1, 2(

Cχa,i
)T
SχaC

χ
a,j = δij .

(3.3.9)

The approximation ϕχa,i of ϕa,i in the AO basis set χ can then be recovered as the linear combination of
atomic orbitals (LCAO)

∀x ∈ R, ϕχa,i(x) =
2Nb∑
µ=1

[Cχa,i]µχa,µ(x). (3.3.10)

One way to compare the LCAO ground-state 1-RDM to the reference FD solution PFD
a is to simply

evaluate the former at the grid points xj , which gives rise to the matrix Pχa ∈ RNg×Ng
sym with entries

[Pχa ]jj′ =
2∑
i=1

ϕχa,i(xj)ϕ
χ
a,i(xj′).

Due to numerical errors, the matrix Pχa is however not a rank-2 orthogonal projector. We therefore chose to
follow a slightly different route (leading to very similar results). The finite difference grid gives a reference
discrete setting in which any quantity of interest for any configuration and AO basis set can be expressed.
For all a’s, the basis χa is represented by a matrix Xa ∈ RNg×2Nb . For any vectors Y1, Y2 ∈ RNg , the
discrete A inner product simply reads δxY T1 AY2 where the notation A stands for both the continuous
inner product and its finite-difference discretization matrix. We denote by ‖ · ‖A the associated norm on
RNg . Solutions to (3.3.9) are then obtained by approximating respectively the Hamiltonian and overlap
matrix by

Hχ
a ' HX

a :=
(
δxXT

a,µH
FD
a Xa,ν

)
16µ,ν62Nb

, Sχa ' SXa :=
(
δxXT

a,µXa,ν

)
16µ,ν62Nb

,

and finding (CXa,i, λXa,i) ∈ R2Nb × R, i = 1, 2, such that HX
a C

X
a,i = λXa,iS

X
a C

X
a,i, i = 1, 2

(CXa,i)TSXa CXa,j = δij , i, j = 1, 2,
(3.3.11)

from which we get the discrete approximations

ϕXa,i = XaC
X
a,i, i = 1, 2. (3.3.12)

Let us gather the coefficients CXa,i into the 2Nb × 2 matrix CXa =
(
CXa,1 |CXa,2

)
. The ground-state density

matrix in the basis χa is approximated by

PXa = ϕXa,1(ϕXa,1)T + ϕXa,2(ϕXa,2)T =
(
XaC

X
a

) (
XaC

X
a

)T ∈ RNg×Ng
sym . (3.3.13)
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3.3.3 Overcompleteness of Hermite Basis Sets
Before getting into basis set optimization, we introduce the following standard Hermite Basis Set (HBS),
constructed from eigenfunctions of the quantum harmonic oscillator. Those functions are solutions to the
eigenvalue problem

(
− 1

2
d2

dx2 + 1
2x

2
)
hn = εnhn and are explicitly given by

hn(x) = cnpn(x) exp
(

−x2

2

)
, εn = n+ 1

2 , n ∈ N, (3.3.14)

where pn is the Hermite polynomial of degree n (with the same parity as n) and cn a normalization
constant such that (hn)n∈N forms an orthonormal basis of L2(R). The hn’s are the analogues of the
standard atomic orbitals obtained by solving atomic electronic structure problems. Let us first consider
the AO basis set made of the first Nb Hermite functions

χHBS = {χHBS
µ }16µ6Nb

= {hn}06n6Nb−1.

The overlap matrix for the configuration a then is of the form

Sχ
HBS

a =
(
INb

Σa
ΣTa INb

)
where Σa := (〈hn(· − a)|hm(· + a)〉)06n,m6Nb−1.

The matrix Σa corresponds to the overlap of functions that are localized at different atomic positions.
It satisfies Σa ' 0 when a is large and Σa ' INb

when a is close to 0, therefore causing conditioning
issues on the overlap matrix SχHBS

a , a phenomenon known as overcompleteness: when a is too small, the
basis functions centered at ±a are almost equal, hence almost linearly dependent in the basis set. We
illustrate this problem by plotting the condition number of the overlap matrix SχHBS

a for different values
of a in Figure 3.2, which indeed blows up for small values of a. This is a well-known issue, and several
methods have been proposed in the literature to cure this phenomenon, such as the standard canonical
orthonormalization procedure [Löw70] or more recent work based on a Cholesky decomposition of the
overlap matrix [Leh19b]. Such methods are however not directly related to the optimization procedure
presented in this paper.
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Figure 3.2 – Condition number of the HBS overlap matrix SχHBS

a for different values of a in log-log scale.
The larger the basis set, the faster the condition number blows up for small values of a.

3.3.4 Practical computation of the criterion JA and JE

The rest of this section is dedicated to the rewriting and the computation of criteria JA and JE for our
1D model in the discrete setting.
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3.3.4.1 Reference orthonormal basis

In order to avoid potential numerical stability issues, each of the Nb atomic orbital χµ is decomposed on
a given truncated orthonormal basis of L2(R) of size N such that Nb � N � Ng. We choose here the
orthonormal basis introduced in (3.3.14). Hence, the matrix Xa ∈ RNg×2Nb is written as

Xa = BaIR, (3.3.15)

with
Ba =

(
h0(x· − a)| · · · |hN −1(x· − a)|h0(x· + a)| · · · |hN −1(x· + a)

)
∈ RNg×2N ,

and
IR =

(
R 0
0 R

)
∈ R(2N )×(2Nb), (3.3.16)

where R ∈ RN ×Nb gathers the coefficients of the atomic orbitals χµ in the truncated HBS orthonormal
basis. Note that we have duplicated R in IR as we consider the same basis at each position ±a, but
everything that follows can be easily adapted to the case where we would like to optimize the bases
at each position separately (to deal with heteronuclear molecular systems for instance). We moreover
impose that RTR = INb

, so that the overlap matrix of Xa, denoted by S(Xa), has the same form as in
Section 3.3.3, that is

S(Xa) := δxXT
a Xa =

(
INb

Σa
ΣTa INb

)
, (3.3.17)

where Σa is the overlap between functions localized at +a and functions localized at −a. To avoid any
issues arising from the conditioning of S(Xa), the minimal sampled distance amin should not be taken too
small.

In the following, we detail the computation of each of the two criteria using the matrix R as the main
variable. We will subsequently optimize the criteria JA and JE with respect to R to obtain optimal AO
basis sets. In order to ease the reading of the following computations, every vector of RNg is rescaled by
a factor

√
δx so that for any given Y1, Y2 ∈ RNg the discrete A inner product simply reads Y T1 AY2. The

same holds for overlap matrices: with this convention, S(Xa) = XT
a Xa. The output of the optimization

is then scaled back to its former state by a factor 1/
√
δx to recover the original normalization.

3.3.4.2 Criterion JA

Let a ∈ R+ be fixed and let SA(Y ) = Y TAY denote the overlap matrix for the A-inner product of any
rectangular matrix Y ∈ RNg×d. Since the columns of Xa[SA(Xa)]− 1

2 are orthonormal for the A inner
product, that is (

Xa[SA(Xa)]− 1
2

)T
A
(
Xa[SA(Xa)]− 1

2

)
= I,

the projection ΠA
Xa

takes the simple form

ΠA
Xa

=
(
Xa[SA(Xa)]− 1

2

)(
Xa[SA(Xa)]− 1

2

)T
A = Xa[SA(Xa)]−1XT

a A. (3.3.18)

Hence, using the cyclicity of the trace and definitions (3.2.3), (3.3.8) and (3.3.18), one has

jA(χ, a) ' −Tr
(
PFD
a ΠA

Xa
AΠA

Xa

)
= −Tr

(
PFD
a × (ABaIR)[SA(BaIR)]−1(ABaIR)T

)
= −Tr

(
Moffline
A (a)IR[SA(BaIR)]−1ITR

)
,

where we have collected in the last expression all matrices independent of R into the matrix

Moffline
A (a) = (ABa)TPFD

a ABa ∈ R2N ×2N . (3.3.19)

Then, using the probability measure P in (3.3.6), we get

JA(R) = −
ˆ

Ω
Tr
(
Moffline
A (a)IR[SA(BaIR)]−1ITR

)
dP(a) = −

Nc∑
n=1

βnTr
(
Moffline
A (an)IR[SA(Ban

IR)]−1ITR
)
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and the optimization problem finally writes, with unknown R ∈ RN ×Nb and for a given inner product A

Find Ropt ∈ argmin
R∈RN ×Nb , RTR=INb

JA(R) (3.3.20)

3.3.4.3 Criterion JE

Let again a ∈ R+ be fixed. We denote by

G(Ng, 2) := {P ∈ RNg×Ng |P 2 = P = PT ,Tr(P ) = 2}

the discrete counterpart of the Grassmann manifold G2, and write ERa (resp. HR
a ) instead of Eχa (resp.

Hχ
a ), so that the dependence in the matrix R appears explicitly. Equation (3.3.3) reads in the discrete

setting

ERa = min
P∈G(Ng,2)

Tr
(
PHR

a

)
= min

C∈R2Nb×2

(C)TS(BaIR)C=I2

Tr
(
CCT × (BaIR)THFD

a (BaIR)
)

= Tr
(
CRa (CRa )T × ITRM

offline
E (a)IR

) (3.3.21)

where, as for the previous case, all matrices independent of R have been gathered in the matrix

Moffline
E (a) = BTaH

FD
a Ba, (3.3.22)

and the matrix CRa is solution to the minimization problem

min
CR∈R2Nb×2

(CR)TS(BaIR)CR=I2

Tr
(
CR(CR)T × ITRM

offline
E (a)IR

)
(3.3.23)

and is given in practice by CRa = [S(BaIR)]−
1
2 (ua,1|ua,2) where ua,1 and ua,2 are orthonormal eigenvectors

associated to the lowest two eigenvalues of

[S(BaIR)]−
1
2 IRM

offline
E (a)ITR [S(BaIR)]−

1
2 .

From (3.3.6) and (3.3.21), one can compute

JE(R) =
ˆ

Ω

∣∣EFD
a − ERa

∣∣2 dP(a) =
Nc∑
n=1

βn
∣∣EFD

an
− ERan

∣∣2
and the optimization problem reads

Find Ropt ∈ argmin
R∈RN ×Nb , RTR=INb

JE(R) (3.3.24)

3.4 Numerical results

3.4.1 Numerical setting and first results
Problems (3.3.20) and (3.3.24) are solved by direct minimization algorithms over the Stiefel manifold [AMS08]

St(N , Nb) = {R ∈ RN ×Nb |RTR = INb
}.

The explicit computation of the gradients of JA and JE with respect to R is detailed in the Appendix. We
used a L–BFGS algorithm (with tolerance 10−7 on the norm of the projected gradient), as implemented
in the Optim.jl package [MR18] in the Julia language [Bez+17]. As initial guess, we picked the first Nb
Hermite functions introduced in Section 3.3.3.

In this subsection, we choose a probability distribution P supported in the interval I = [1.5, 5] so as
to retain the physics of interest that takes place around the equilibrium configuration a0 ' 1.925 and all
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the way to dissociation. In particular amin = 1.5 is taken sufficiently large to avoid the conditioning issues
on the overlap matrices described in Section 3.3.3. More precisely, all the results in this subsection are
obtained with the probability

P = 1
10

10∑
n=1

δan
with an = 1.5 + (n− 1)3.5

9 . (3.4.1)

The quantities Moffline
A (an) and Moffline

E (an) are computed offline beforehand. We will discuss this choice
and consider other probability measures P in Sections 3.4.2.2 and 3.4.2.3.

The finite-difference grid is a uniform grid on the interval [−20, 20] discretized into Ng = 1999 points
(δx = 0.02). Finally, we decompose the basis functions to be optimized in the HBS {hn}06n6N −1 of L2(R)
of size N = 10. Regarding the choice of the inner product for the first criterion JA, we used the standard
L2(R) and the H1(R) inner products, and denoted by JL2 and JH1 the corresponding. This translates at
the discrete level by choosing A = INg for JL2 and A = INg − ∆ for JH1 where ∆ is the 3-point finite-
difference discretization matrix of the 1D Laplace operator. Once obtained, the optimal bases are used to
solve the variational problem (3.3.11) on a much finer sampling of I and their accuracy is compared to
the HBS. The code performing the simulations and plotting the results is available online1. Also, for the
sake of clarity in the plots, Ẽa (resp. ρ̃a) denotes the GS energy (resp. the density) in the configuration
a with a given basis (specified by the context) and Ea (resp. ρa) stands for the reference energy (resp.
density) on the finite difference grid. Note that we write HBS for the (nonoptimized) Hermite basis set,
and L2-OBS, H1-OBS or E-OBS for optimized basis sets with respect to the criterion JL2 , JH1 , or JE .

Figure 3.3 displays the dissociation curve and the energy difference on the interval I for different values
of Nb, the size of the AO basis set. For Nb = 1, i.e. only one basis function at ±a, criterion JE shows
better performance than the criterion JA, regardless of the choice of norm to perform the projections.
It also very closely matches the accuracy of the standard HBS. When Nb becomes larger however, the
different criteria behave in a similar fashion and we observe that they approach the dissociation curve
better than the Hermite basis. Comparing the values of criterion JE for all bases, which directly measures
the distance to the dissociation curve, we see in Table 3.1 that all optimized bases give an increased
accuracy of roughly four orders of magnitude over the interval I for Nb = 4.

In Figure 3.4, we plot the density for a given value of a and the error on the density for different
norms, with varying values of Nb. The error is plotted with respect to three different distances: the
L1-norm, which corresponds to the L2-norm on eigenvectors, the H1-norm of the error on the density, as
it is common to compute the forces

´
R ρ∇aVa with good estimates on the H−1-norm of ∇aVa (see e.g.

[Can+21b]), and the distance
‖∇√

ρ1 − ∇√
ρ2‖L2

(recall that the von-Weizsäcker kinetic energy reads 1
2
´
R |∇√

ρ|2). We observe similar behaviors between
these different distances. For Nb = 1, both bases obtained with the first criterion behave slightly better
than the standard Hermite basis and the basis computed with the second criterion. For Nb = 3, we
observe again that all optimal bases yield better accuracy than the Hermite basis. Table 3.1 gives the
confirmation that each basis for a given criterion indeed performs better than the other bases for that
particular criterion. As for dissociation curves, we read from the values of JL2 and JH1 that the optimized
bases yield similar results for large Nb, all of them giving lower values than the HBS. Note that the optimal
bases for criterion JL2 and JH1 give similar results for any number of basis functions Nb, so that the L2

and H1 norm optimizations seem equivalent.
In terms of computational time, first note that criterion JH1 is always more expensive to compute than

JL2 as it requires additional matrix-vector products with the matrix A, this having noticeable impact on
the computational time. Second, criterion JE requires less off-line data as it only needs to be given the
reference eigenvalues while criterion JA requires the reference GS eigenvectors (or density matrices). In
addition, the use of orthonormality constraints as detailed in appendix allows one to compute the gradient
of JE at very low cost. In turn, criterion JE is more than twice faster to minimize than criterion JL2 in
our implementation.

Finally, for the sake of completeness, we plot in Figure 4.1 the different basis functions built with
each criterion for different values of Nb, confirming again the previous observations that the optimal basis
functions are quite close to the standard Hermite basis functions.

1https://github.com/gkemlin/1D_basis_optimization
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The main conclusion of these observations is that, for Nb large enough, there is no real difference
between the proposed criteria. Still, if the bases we built do not seem to be very different from the
standard Hermite basis (Figure 4.1), building optimal bases allows to increase accuracy on the quantities
of interest we focused on by one order of magnitude in average.

Value of JL2 for the different basis sets Value of JH1 for the different basis sets

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4
HBS -7.40829 -7.70051 -7.74312 -7.77138

L2-OBS -7.43954 -7.76479 -7.77725 -7.77773
H1-OBS -7.43928 -7.76466 -7.77724 -7.77772
E-OBS -7.39410 -7.76425 -7.77720 -7.77772

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4
HBS -10.5613 -11.0566 -11.1451 -11.2402

L2-OBS -10.6256 -11.2338 -11.2630 -11.2650
H1-OBS -10.6265 -11.2342 -11.2630 -11.2651
E-OBS -10.5334 -11.2313 -11.2626 -11.2650

Value of JE for the different basis sets

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4
HBS 3.77956×10−2 3.98301×10−3 1.86537×10−3 1.35309×10−4

L2-OBS 6.52016×10−2 2.18282×10−4 1.01365×10−6 3.22260×10−8

H1-OBS 6.83537×10−2 2.40548×10−4 1.27251×10−6 3.91885×10−8

E-OBS 3.69610×10−2 1.92087×10−4 6.93394×10−7 2.54014×10−8

L–BFGS iterations

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4
L2-OBS 4 13 48 219
H1-OBS 7 17 235 not converged after 500 it
E-OBS 6 19 52 134

Table 3.1 – (Top & Middle) Values of the different criteria for the HBS and optimal bases, for increasing
values of Nb. (Bottom) Number of iterations of L–BFGS required for each criterion to achieve convergence
up to requested tolerance (10−7 on the `2-norm of the gradient).
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Figure 3.3 – Energies for the optimal bases obtained with the different criteria. (Top) Dissociation curve.
(Bottom) Errors on the energy on the range of configuration I = [1.5, 5].
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Figure 3.4 – (Top) Densities for the optimal bases obtained with the different criteria. (Middle) Errors
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Figure 3.5 – Optimal basis functions for different criteria, each of them being optimized for different values
of Nb.
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3.4.2 Influence of numerical parameters
3.4.2.1 Random starting points

In Section 3.4.1, we used the first Nb Hermite functions as a starting point for the optimization procedures.
We obtain the same solutions if we start from a random matrix R on the Stiefel manifold, in the sense
that the optimal values reached for each criterion are the same, as well as the error plots. However, the L–
BFGS algorithm requires more iterations to converge. The basis functions obtained from the optimization
algorithms are different from those observed in Figure 4.1, but still span the same space as the variational
solutions are equal.

3.4.2.2 Extrapolating the parameter space I

In Section 3.4.1, we chose a probability measure P supported in the interval [1.5, 5] in order to avoid
conditioning issues. Indeed, taking smaller values of a results in the L–BFGS algorithm having convergence
problems when Nb increases. This phenomenon was observed already for Nb = 3 or Nb = 4 when including
a = 1 in the support of P. In practice, this problem can be solved by using preconditioning or getting rid
of overcompleteness by pre-processing the basis χa (e.g. selecting a smaller basis by filtering out the very
small singular values of the original overlap matrix), but for brevity we will not elaborate further in this
direction.

However, once we have computed optimal bases for a reasonable interval I, it is possible to use these
bases to solve the variational problem (3.3.9) and extrapolate the energy and the density to smaller values
of a that are not in the set I. The results are plotted in Figure 3.6. We notice that the quantities of
interest are better approximated on I = [1.5, 5], but for smaller a’s, there is no more gain in accuracy
with respect to the standard HBS.
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Figure 3.6 – Energy and densities error with extrapolation up to a = 0.5, with basis functions optimized
on I = [1.5, 5].

3.4.2.3 Choice of the probability P

The major drawback of our AO basis optimization lies in the necessity to compute very accurate reference
solutions for all configurations in the support of P. This is not an issue for our 1D toy model but it can
be very time consuming for real systems if the support of P is too large. It is therefore crucial to reduce
as much as possible the support of P.

In this section, we study the influence of the probability measure P on the quality of the optimized bases.
For simplicity, we restrict ourselves to uniform samplings of the interval I = [1.5, 5]. Numerical tests show
that increasing the sample size above the reference sampling with Nc = 10 points used in Section 3.4.1 (see
Eq. (3.4.1)) brings no significant accuracy improvement. Therefore we chose to investigate in the following
the performance of the optimal AO basis sets obtained with very sparse sampling. Figure 3.7 pictures the
error of approximation of the dissociation curve and densities for three samplings: first, the two extreme
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points of the interval I = [1.5, 5]; second, two points around the equilibrium distance a0 ' 1.925 ; third,
a single point near the equilibrium distance. All curves are plotted for a fixed number of basis functions
Nb = 3.

It appears that the latter sampling already provides satisfactory accuracy. The criteria JL2 and JH1

are equal to −5 × 10−6 for optimized basis to be compared with −1.8 × 10−3 for standard HBS. Hence
they provide a gain of accuracy in energy of three orders of magnitude over the whole dissociation curve.
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Figure 3.7 – Error plots for probability measures P corresponding to very sparse samplings of the interval
I = [1.5, 5]: i) the two endpoints of I ii) two points near the equilibrium distance and iii) one point
near the equilibrium distance. (Top line) Error on energy. (Bottom line) Error on density in L1 norm.
(Left) OBS for JH1 . (Middle) OBS for JL2 . (Right) OBS for JE . The “a” in legends are the sampled
configurations a.

3.4.2.4 Number of Hilbert basis functions

We now take the same setting as in Section 3.4.1, except that we set N = 5 instead of N = 10. This
provides similar results as those collected in Table 3.1, see Table 3.2. However, the values of the criteria
JA and JE are higher than for N = 10, in particular for Nb = 4, where criterion JA cannot be optimized
further than −10−5, which makes sense as the space over which the optimization algorithms are performed
is smaller. Calculations with N = 15 were also performed: for Nb = 1, 2, 3, the criteria are slightly
improved but for Nb = 4, convergence issues were noticed, due to ill conditioning of the overlap matrices
for a = 1.5 as the number N of functions used to describe the optimal bases is larger.
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Value of JL2 for the different basis sets Value of JH1 for the different basis sets

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4
HBS -7.40829 -7.70051 -7.74312 -7.77138

L2-OBS -7.43933 -7.76304 -7.77554 -7.77618
H1-OBS -7.43923 -7.76258 -7.77525 -7.77612
E-OBS -7.39401 -7.76259 -7.77545 -7.77615

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4
HBS -10.5613 -11.0566 -11.1451 -11.2402

L2-OBS -10.6237 -11.2225 -11.2541 -11.2577
H1-OBS -10.6240 -11.2244 -11.2555 -11.2581
E-OBS -10.5328 -11.2234 -11.2547 -11.2580

Value of JE for the different basis sets

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4
HBS 3.77956×10−2 3.98301×10−3 1.86537×10−3 1.35309×10−4

L2-OBS 6.43832×10−2 2.46466×10−4 1.58667×10−5 1.01128×10−5

H1-OBS 6.13025×10−2 2.45930×10−4 1.62235×10−5 1.00611×10−5

E-OBS 3.69681×10−2 1.30365×10−4 1.41935×10−5 9.74560×10−6

Table 3.2 – Value of the different criteria for the different local (optimized and Hermite) bases, with N = 5
and increasing values of Nb.
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Appendix
In this appendix, we will use extensively the two symmetries of the trace: for any matrices M and N such
that MN and NM are defined,

Tr(MN) = Tr(NM) and Tr(MT ) = Tr(M).

Computation of the gradient of JA

Let R,H ∈ RN ×Nb and define IH =
(
H 0
0 H

)
. One has

JA(R+H) − JA(R) = −
ˆ

Ω
Tr
(
Moffline
A (a)

(
2IR[SA(BaIR)]−1ITH + IR

[
d[SA]−1(BaIR) · (BaIH)

]
ITR
))

dP(a)

+O(‖H‖2)
(3.4.2)

Considering that

(M+H)−1−M−1 = −M−1HM−1+O(‖H‖2) and SA(BIR+H)−SA(BaIR) = ITHS
A(B)IR+ITRSA(B)IH+O(‖H‖2),

it follows from the chain rule that

d[SA]−1(BaIR) · (BaIH) = −[SA(BaIR)]−1 (ITHSA(Ba)IR + ITRS
A(Ba)IH

)
[SA(BaIR)]−1.

From this computation, we obtain that the integrand in expression (3.4.2) writes for all a

2Tr
(
Moffline
A (a)

[
IR[SA(BaIR)]−1ITH − IR[SA(BaIR)]−1ITHS

A(Ba)IR[SA(BaIR)]−1ITR
])

= 2Tr
(
Moffline
A (a)IR[SA(BaIR)]−1ITH − ITHS

A(Ba)IR[SA(BaIR)]−1ITRM
offline
A (a)IR[SA(BaIR)]−1) .

(3.4.3)

The idea is now to write the expression (3.4.3) as the inner product of H with a given matrix of
RN ×Nb , which we will identify as the integrand of the gradient of JA. Changing from IH to H imposes to
decompose each matrix by block and to write the trace in (3.4.3) as the sum of traces over the diagonal
blocks. To this end we introduce the superscripts "++", "+−", "−+" and "−−" associated with one of the
four identically shaped blocks of a generic matrix

M =
(
M++ M+−

M−+ M−−

)
. (3.4.4)

Expression (3.4.3) therefore immediately reads

2Tr
(
ITH
[
Moffline
A (a)IR[SA(BaIR)]−1 − SA(Ba)IR[SA(BaIR)]−1ITRM

offline
A (a)IR[SA(BaIR)]−1]︸ ︷︷ ︸

MA(a,R)

)

= 2Tr
(
HT

(
MA(a,R)++ +MA(a,R)−−)) . (3.4.5)

One can verify that MA(a,R)++ +MA(a,R)−− is in RN ×Nb and we conclude by identification that

∇JA(R) = −2
ˆ

Ω

(
MA(a,R)++ +MA(a,R)−−)dP(a). (3.4.6)

Computation of the gradient of JE

Let R,H ∈ RN ×Nb and define IH =
(
H 0
0 H

)
. We immediately have that

∇JE(R) = −2
ˆ

Ω
∇Ea(R) (Ea − Ea(R)) dP(a), (3.4.7)
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where
Ea(R) = Tr

(
Ca(R)(Ca(R))T × Ha(R)

)
, (3.4.8)

with Ca(R) defined in Section 3.3.2 and Ha(R) := ITRM
offline
E (a)IR. Therefore, if we define Ea(R,C) = Tr(CCTHa(R)),

then Ea(R) = Ea(R,Ca(R)) and we have, by the chain rule,

∇Ea(R) ·H = ∇REa(R,Ca(R)) ·H + ∇CEa(R,Ca(R)) · (dCa(R) ·H) .

We now detail the computations of the two gradients of Ea, namely ∇REa and ∇CEa.

Computation of the first gradient ∇REa Using notation (3.4.4), we introduce

Ma := Moffline
E (a) and Σ(H) := ITHMaIR =

(
HTM++

a R HTM+−
a R

HT M−+
a R HTM−−

a R

)
∈ R(2Nb)×(2Nb),

so that, with P = CCT ,

Tr (P [dHa(R) ·H]) = Tr
(
P [Σ(H) + Σ(H)T ]

)
= 2Tr(PΣ(H))

= 2Tr
(
HT

(
M++
a RP++ +M−+

a RP+− +M+−
a RP−+ +M−−

a RP−−)) .
In the end,

∇REa(R,C) = 2
(
M++
a R(CCT )++ +M+−

a R(CCT )−+ +M−+
a R(CCT )+− +M−−

a R(CCT )−−) ∈ RN ×Nb .

Computation of the second gradient ∇CEa The Euler–Lagrange equation of the minimization prob-
lem (3.3.21) yields that there exist a symmetric matrix Λa(R) ∈ R2×2 such that

∇CEa(R,Ca(R)) = 2Ha(R) = 2S(BaIR)Ca(R)Λa(R),

where Λa(R) is actually a diagonal matrix whose diagonal is composed of the two lowest eigenvalues of
Ha(R). Moreover, if we differentiate the constraint Ca(R)TS(BaIR)Ca(R) = Id2, we get

Ca(R)TS(BaIR)(dCa(R) ·H) + (dCa(R) ·H)T S(BaIR)Ca(R) = −Ca(R)T (dS(BaIR) ·H)Ca(R),

so that

∇CEa(R,Ca(R)) · (dCa(R) ·H) = 2Tr
(
(S(BaIR)Ca(R)Λa(R))T (dCa(R) ·H)

)
= −Tr

(
(dS(BaIR) ·H)Ca(R)Λa(R)Ca(R)T

)
.

Now, let us recall that
dS(BaIR) ·H = ITHS(Ba)IR + ITRS(Ba)IH .

Thus, by denoting Qa(R) = Ca(R)Λa(R)Ca(R)T , we get that

∇CEa(R,Ca(R)) · (dCa(R) ·H) = − 2Tr
(
HT

(
S(Ba)++RQa(R)++ + S(Ba)+−RQa(R)−+

+ S(Ba)−+RQa(R)+− + S(Ba)−−RQa(R)−−))
which ends the computations of the second gradient.

Final gradient Compiling the computations of the two previous paragraphs, we obtain

∇REa(R) = 2
(
M++
a RPa(R)++ +M+−

a RPa(R)−+ +M−+
a RPa(R)+− +M−−

a RPa(R)−−)
− 2

(
S++
a RQa(R)++ + S+−

a RQa(R)−+ + S−+
a RQa(R)+− + S−−

a RQa(R)−−) (3.4.9)

where Pa(R) = Ca(R)Ca(R)T , Ma = Moffline
A (a), Sa = S(Ba) and Qa(R) = Ca(R)Λa(R)Ca(R)T , and the

gradient of JE is computed with (3.4.7).
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Solid State Physics
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Chapter 4

Modified-operator method for the
calculation of band diagrams

of crystalline materials

This chapter has been published in the article [LV2]:

Eric Cancès, Muhammad Hassan, and Laurent Vidal. “Modified-operator method for the calculation
of band diagrams of crystalline materials”. In: Mathematics of Computation (2023)

The preliminary results of the last section are not from [LV2].

Abstract In solid state physics, electronic properties of crystalline materials are often inferred
from the spectrum of periodic Schrödinger operators. As a consequence of Bloch’s theorem, the nu-
merical computation of electronic quantities of interest involves computing derivatives or integrals over
the Brillouin zone of so-called energy bands, which are piecewise smooth, Lipschitz continuous periodic
functions obtained by solving a parametrized elliptic eigenvalue problem on a Hilbert space of periodic
functions. Classical discretization strategies for resolving these eigenvalue problems produce approximate
energy bands that are either non-periodic or discontinuous, both of which cause difficulty when comput-
ing numerical derivatives or employing numerical quadrature. In this article, we study an alternative
discretization strategy based on an ad hoc operator modification approach. While specific instances of
this approach have been proposed in the physics literature, we introduce here a systematic formulation of
this operator modification approach. We derive a priori error estimates for the resulting energy bands and
we show that these bands are periodic and can be made arbitrarily smooth (away from band crossings)
by adjusting suitable parameters in the operator modification approach. Numerical experiments involving
a toy model in 1D, graphene in 2D, and silicon in 3D validate our theoretical results and showcase the
efficiency of the operator modification approach.
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4.1 Introduction
In solid state physics, macroscopic properties such as the electrical and thermal conductivities, heat ca-
pacity, magnetic susceptibility, and optical absorption of crystalline materials are often explained through
the use of an independent electron model (see, e.g., [Har80, Part II, Chapter5], [Mar20, Chapter 12],
[KMM96, Chapter7], and [GP13, Chapter 5]). This model consists of treating the crystalline material
as an infinite, perfect crystal and modeling the electrons as independent of each other (quasiparticle ap-
proach) and evolving under the influence of an effective periodic potential. The behavior of each electron
is thus determined by the spectrum of an unbounded, self-adjoint, periodic Schrödinger operator acting
on L2(R3) (see, e.g., [RS78, ChapterXIII]). Although the independent electron assumption might seem
naive, this model has achieved great success in explaining basic phenomena such as the difference between
conductors, semi-conductors and insulators, as well as describing the electronic properties of many ubiq-
uitous non-strongly correlated materials (see, e.g., [Har80, PartIII], [Mar20, Part V], [GP13, Chapters
10-12], and [KMM96, Chapters 6]). In addition, Kohn-Sham Density Functional Theory (DFT) provides
a method to parameterize this independent-electron model and obtain quantitatively accurate results for
a very large class of materials of practical interest (see, for instance, [Kax03; DG12]).

In the independent electron model, the practical computation of electronic quantities of interest is based
on the use of the Bloch-Floquet transform (see, e.g., [RS78, Chapter XIII]). The Bloch-Floquet transform
essentially yields an explicit block-diagonal decomposition of the underlying Schrödinger operator into
so-called Bloch fibers, which are self-adjoint operators, bounded from below, acting on a space of periodic
square-integrable functions. Thus, the problem of computing the spectrum of the periodic Schrödinger
operator is reduced to one of calculating the low-lying eigenvalues of the Bloch fibers. These Bloch fibers
are typically indexed by a parameter k that belongs to a d-dimensional torus (the Brillouin zone), and
therefore each resulting eigenvalue (often referred to as an energy) can be viewed as a periodic function
on the d-dimensional Brillouin Zone. It is thus common in the solid-state physics literature to speak of
energy bands.

Energy bands provide both qualitative and quantitative information about the electronic properties of
the crystalline material being studied (see, e.g., the references quoted above). Insulators and conductors
for instance, are characterized by the presence or absence, respectively, of an energy band gap. Other
electronic quantities of interest can be expressed in terms of integrals (over the Brillouin zone) or derivatives
involving the energy bands (see, e.g., [Can+20]). In order to estimate important quantities such as the
integrated density of states or the integrated density of energy (see Section 4.2 for precise definitions of
these quantities), it is therefore necessary to

• sample the energy bands at different k-points which corresponds to solving approximately the k-fiber
eigenvalue problems posed on a periodic domain;

• use suitable numerical quadrature to approximate integrals involving these energy bands.

Concerning the first step, the famous Monkhorst-Pack numerical scheme [MP76] is widely used to select
the specific k-points at which the eigenvalue problem is to be solved. For the second step, a number of
numerical quadrature methods for integration in the Brillouin zone have been proposed including the well-
known linear tetrahedron method (see, e.g., [LT72]) and the improvement due to Blöchl et al. [BJA94],
and smearing methods (see, e.g., [Mor+18; PP99; Hen01; MP89]).

From a mathematical and computational point of view, two natural questions now arise. First, which
discretization method should be employed in the actual numerical resolution of the k-fiber eigenvalue
problems, and second, what can be said about the convergence rate of the various numerical quadrature
methods that are in use? For technical reasons, these questions become particularly relevant for metallic
systems (see, e.g., [GL16] for an analysis involving insulators and semi-conductors), and in this case, the
latter question has recently been addressed by the first author and coworkers in [Can+20]. The analysis
carried out in [Can+20] revealed that the periodicity (with respect to the Brillouin zone) and regularity
properties of the energy bands play a crucial role in the quadrature convergence rates, which of course is
consistent with the experience of classical integration schemes in numerical analysis. Given that different
eigenvalue discretization methods can conceivably produce (and in fact do produce, as we show in Section
4.3) energy bands that possess different regularity properties or may be altogether aperiodic, the choice
of discretization scheme becomes vitally important. This article is concerned precisely with the study of
approximation strategies for energy bands in the Brillouin zone.
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The remainder of this article is organized as follows: We begin in Section 4.2 by introducing our notation
and stating precisely the problem setting and governing equations. We then present in Section 4.3 two
classical Galerkin discretization strategies for approximating the k-fiber eigenvalue problems, and we show
the problems associated with the energy bands produced by these classical approaches. Next, in Section
4.4, we present an alternative discretization scheme, systematizing ideas first introduced in the physics
literature (see Remark 4.4.1 below), which is based on modifying in a controlled manner the underlying k-
fiber operator. In Section 4.5, we present our two main results on the analysis of this alternative approach:
we derive a priori error estimates with respect to a discretization cutoff for the modified energy bands, and
we show that these bands are periodic and can be made arbitrarily smooth (away from band crossings) by
adjusting suitable parameters in the operator modification approach. Numerical experiments in Section
4.6 involving a 1D toy model, and two real materials (graphene and face-centered cubic silicon), validate
our theoretical results and showcase the efficiency of the operator modification approach. Finally, in
Section 4.7, we present the proofs of our main results.

4.2 Problem Formulation and Setting

Perfect crystals are structures composed of a periodic arrangement of atoms. Such structures can
therefore be described very conveniently through the use of a suitable lattice: assuming a d-dimensional
lattice with d ∈ N∗ = {1, 2, 3, . . .}, we denote by {ai}di=1 a collection of d linearly independent primitive
vectors in Rd, and we denote by {bi}di=1 ⊂ Rd the corresponding reciprocal vectors, i.e., vectors in Rd
that satisfy ai · bj = 2πδij ∀i, j ∈ {1, . . . , d}. The primitive lattice L ⊂ Rd and reciprocal lattice L∗ ⊂ Rd
are then defined as

L := {Za1 + . . .+ Zad} and L∗ := {Zb1 + . . .+ Zbd} .

We denote by Ω ⊂ Rd and Ω∗ ⊂ Rd the first Wigner-Seitz unit cell of the primitive and reciprocal
lattice respectively. Recall that the first Wigner-Seitz unit cell of a lattice in Rd is the locus of points in
Rd that are closer to the origin of the lattice than to any other lattice point. The first Wigner-Seitz cell
Ω∗ of the reciprocal lattice is called the (first) Brillouin zone.

Finally for clarity of the subsequent exposition, let us introduce the so-called translation operator
and the related notion of lattice periodicity: Given any y ∈ Rd and denoting D(Rd) := C ∞

c (Rd) the
space of complex-valued smooth compactly-supported functions on Rd, we define the translation operator
τy : D(Rd) → D(Rd) as the mapping with the property that

∀Φ ∈ D(Rd) :
(
τyΦ

)
(x) := Φ(x − y) for a.e. x ∈ Rd.

It follows that for any y ∈ Rd, the translation operator extends by duality as a mapping τy : D′(Rd) → D′(Rd).
Given now some Φ ∈ D′(Rd), we will say that Φ is L∗-periodic (resp. L-periodic) if τGΦ = Φ for

all G ∈ L∗ (resp. τRΦ = Φ for all R ∈ L).

4.2.1 Function spaces and norms

We define the function space L2
per(Ω) as the set of (equivalence classes of) functions given by

L2
per(Ω) :=

{
f ∈ L2

loc(Rd) such that f is L-periodic
}
,

equipped with the inner-product

∀f, g ∈ L2
per(Ω): (f, g)L2

per(Ω) :=
ˆ

Ω
f(x)g(x) dx,

where L2
loc(Rd) denotes the space of complex-valued, locally square-integrable functions on Rd, and f(·)

indicates the complex conjugate of f(·). The spaces Lpper(Ω), p ∈ [1, 2) ∪ (2,∞] are defined analogously.
We denote by B, the orthonormal Fourier basis of L2

per(Ω), i.e.,

B :=
{
eG(x) := 1

|Ω| 1
2
eıG·x : G ∈ L∗

}
.
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It follows from the definition of the reciprocal lattice L∗ that the basis set B consists precisely of
L-periodic plane-waves. Thus, given any f ∈ L2

per(Ω), we will frequently express f in the form

f =
∑

G∈L∗

f̂GeG, where f̂G :=
ˆ

Ω
f(x)eG(x) dx, and

∑
G∈L∗

∣∣f̂G
∣∣2 =

ˆ
Ω

|f(x)|2 dx < ∞.

Periodic Sobolev spaces of positive orders are constructed analogously. Indeed, we define for each s > 0
the set

Hs
per(Ω) :=

{
f ∈ L2

per(Ω):
∑

G∈L∗

(
1 + |G|2

)s ∣∣f̂G
∣∣2 < ∞

}
,

equipped with the inner-product

∀f, g ∈ Hs
per(Ω): (f, g)Hs

per(Ω) :=
∑

G∈L∗

(
1 + |G|2

)s
f̂GĝG.

Naturally, we have H0
per(Ω) := L2

per(Ω), and we define periodic Sobolev spaces of negative orders through
duality, i.e., for each s > 0 we define H−s

per(Ω) :=
(
Hs

per(Ω)
)′, and we equip H−s

per(Ω) with the canonical
dual norm.

Finally, given a Banach space X, we will write L(X) to denote the Banach space of bounded linear
operators from X to X, equipped with the usual operator norm.

4.2.2 Governing operators and quantities of interest

In this section, we assume that the electronic properties of the crystal that we study are encoded in
an effective one-body Schrödinger operator

H := −1
2∆ + V acting on L2(Rd) with domain H2(Rd), (4.2.1)

where V ∈ L∞
per(Ω) is an L-periodic effective potential. Many electronic properties of the crystal we study

can be computed from the spectral decomposition of this one-body Hamiltonian operator H, and we are
therefore interested in its analysis and computation. The classical approach to this problem relies on the
use of the Bloch-Floquet transform (see, e.g., [RS78, Chapter XIII]), which we will now briefly present.
The following exposition is based on the article [Can+21a].

We begin by introducing for each G ∈ L∗, the unitary multiplication operator TG : L2
per(Ω) → L2

per(Ω)
defined as

∀v ∈ L2
per(Ω):

(
TGv

)
(x) = e−ıG·xv(x) for a.e. x ∈ Rd.

Next, we introduce the Hilbert space of L∗-quasi-periodic, L2
per(Ω)-valued functions on Rd as the vector

space

L2
qp(Rd;L2

per(Ω)) :=
{
Rd 3 k 7→uk ∈ L2

per(Ω):
ˆ

Ω∗
‖uk‖2

L2
per(Ω)dk < ∞ and

uk+G = TGuk ∀ G ∈ L∗ and a.e. k ∈ Rd
}
,

equipped with the inner product

∀u, v ∈ L2
qp(Rd;L2

per(Ω)) : (u, v)L2
qp(Rd;L2

per(Ω)) =
 

Ω∗
(uk, vk)L2

per(Ω) dk,

where we have denoted
ffl

Ω∗ := 1
|Ω∗|

´
Ω∗ and we have used the subscript ‘qp’ to highlight quasi-periodicity.
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The Bloch-Floquet transform is now the unitary mapping from L2(Rd) to L2
qp(Rd;L2

per(Ω)) with the
property that any u ∈ D(Rd) is mapped to the element of L2

qp(Rd;L2
per(Ω)) defined as

Rd 3 k 7→ uk :=
∑
R∈L

u
(

• +R
)
e−ık·(•+R) ∈ L2

per(Ω).

Any bounded linear operator A: L2(Rd) → L2(Rd) that is L-periodic, i.e., one that commutes with
the translation operator τR for all R ∈ L, is decomposed by the Bloch-Floquet transform in the following
sense: denoting by L∞

qp
(
Rd;L

(
L2

per(Ω)
))

, the vector space defined as

L∞
qp
(
Rd;L

(
L2

per(Ω)
))

:=
{
Rd 3 k 7→Ak ∈ L

(
L2

per(Ω)
)

: sup
k∈Ω∗

‖Ak‖
L
(
L2

per(Ω)
) < ∞

and Ak+G = TGAkT
∗
G ∀ G ∈ L∗ and a.e. k ∈ Rd

}
,

there exists a function k 7→ Ak in L∞
qp
(
Rd;L

(
L2

per(Ω)
))

such that for any u ∈ L2(Rd), all G ∈ L∗ and
a.e. k ∈ Rd it holds that

(Au)k = Akuk. (4.2.2)

Here, the operators (Ak)k∈Rd ∈ L
(
L2

per(Ω)
)

are called the Bloch fibers of A.
The Bloch decomposition (4.2.2) can also be extended to unbounded, L-periodic self-adjoint operators

such as the one-body electronic Hamiltonian defined through Equation (4.2.1). In this case, the fibers
Hk, k ∈ Rd of the electronic Hamiltonian H are unbounded operators on L2

per(Ω) given by

Hk := 1
2 (−ı∇ + k)2 + V, with domain H2

per(Ω). (4.2.3)

A detailed proof of this technical result can be found in [RS78, Chapter XIII].
Thanks to the Bloch-Floquet decomposition (4.2.2), the spectral properties of the Hamiltonian H can

be deduced using properties of the fibers Hk, k ∈ Rd. Indeed, it is a classical result (see, e.g., [RS78,
Chapter XIII]) that

• each Hk is a self-adjoint operator on L2
per(Ω) with domain H2

per(Ω) and form domain H1
per(Ω) (see,

e.g., [RS72, Chapter VIII.6] for a definition of the form domain). Additionally, each Hk is bounded
below and has compact resolvent so that each Hk has a purely discrete spectrum with eigenvalues
accumulating at +∞ and eigenfunctions that form an orthonormal basis for L2

per(Ω);

• H is a self-adjoint operator, bounded from below, on L2(Rd) with domain H2(Rd) and form do-
main H1(Rd). Additionally, H has a purely absolutely continuous spectrum, and it holds that
σ(H) = σac(H) = ∪

k∈Ω∗
σ(Hk).

From the point of view of applications, the Bloch-Floquet decomposition (4.2.2) also allows for the
calculation of electronic properties of interest of the underlying crystal using only spectral information
from the fibers Hk, k ∈ Rd (see below and also, e.g., [RS78; Can+20] for details). As a consequence,
it suffices to focus our attention purely on the resolution of the eigenvalue problem for the operators
Hk, k ∈ Rd defined through Equation (4.2.3).

Given a fiber Hk, k ∈ Rd defined through Equation (4.2.3), we seek an L2
per(Ω)-orthonormal basis

{(εn,k, un,k)}n∈N∗ ⊂
(
R × L2

per(Ω)
)N∗

of eigenmodes of Hk:

Hkun,k = εn,kun,k and
(un,k, um,k)L2

per(Ω) = δnm ∀n,m ∈ N∗.
(4.2.4)

Equipped with such a basis, we can introduce several important electronic properties of interest. To
this end, we first require a convention and some notation.
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Convention 1. Consider the setting of the eigenvalue problem (4.2.4). By convention, for every k ∈ Rd
we order the eigenvalues εn,k, n ∈ N∗ (counting multiplicities) such that

ε1,k 6 ε2,k 6 ε3,k 6 ε4,k . . . .

Moreover, for every n ∈ N∗ we will write εn : Rd → R for the mapping k 7→ εn,k, and we will call εn the
nth energy band. Since the functions εn, n ∈ N∗ are continuous (as a straightforward consequence of the
Courant-Fisher min-max theorem), we have

σ(H) = ∪
n∈N∗

Ran (εn),

and for each n ∈ N∗ it holds that Ran (εn) = [min εn,max εn] is an interval.
We will use a similar convention for any subsequent eigenvalue problem that we introduce in the sequel.
The energy bands play a key role in the definition of various electronic properties of a perfect crystal.

Indeed, given k ∈ Rd and the Bloch fiber Hk defined through Equation (4.2.3), the kth fiber of the one-
body ground-state density matrix at chemical potential µ ∈ R is defined as the bounded self-adjoint
operator γk(µ) : L2

per(Ω) → L2
per(Ω) given by

γk(µ) := 1(Hk 6 µ) =
∑
n∈N∗

1
(
εn(k) 6 µ

)
|un,k〉 〈un,k| .

The integrated density of states is defined as the function N : R → R+ given by

∀µ ∈ R : N(µ) :=
∑
n∈N∗

 
Ω∗

1
(
εn(k) 6 µ

)
dk.

Lastly, the integrated density of energy is defined as the function E : R → R given by

∀µ ∈ R : E(µ) :=
∑
n∈N∗

 
Ω∗
εn(k)1

(
εn(k) 6 µ

)
dk.

Often the above quantities are computed for µ = µF ∈ R where µF is known as the Fermi level and
is defined through the relation N(µF) = N with N being the number of electrons (or electrons pairs if
spin is taken into account) per unit cell. Naturally, computing any of these physical observables requires
the approximation, through numerical quadrature, of integrals over the Brillouin zone Ω∗ that involve the
energy bands {εn}n∈N∗ . This is a highly non-trivial problem in the case of metallic systems for which
the Fermi level µF is an interior point of σ(H), and several numerical methods have been proposed for
Brillouin zone integration (see, for instance, the previously cited articles [LT72; BJA94; Mor+18; PP99;
Hen01]). From the point of view of numerical analysis, it is natural to ask for error bounds for the various
numerical methods in the literature, and such an error analysis has recently been carried out in [Can+20]
under the assumption that the values of the functions εn, n ∈ N∗ can be computed exactly at any k ∈ Ω∗.

As is typically the case in the analysis of quadrature methods, the error analysis in [Can+20] makes use
of functional properties of the energy bands {εn}n∈N∗ . This analysis shows that there are two properties
of these energy bands in particular that are necessary in order to deduce higher order convergence rates
for numerical quadrature in the Brillouin zone.

Property one (Periodicity of the eigenvalues).
Consider the setting of the eigenvalue problem (4.2.4) and let Convention 1 hold. Then for each n ∈ N∗,

the function εn is L∗-periodic.
The proof follows in view of Convention 1 by recognizing that for any k ∈ Rd and any G ∈ L∗,

the operators Hk and Hk+G are unitarily equivalent through the unitary multiplication operator
TG : L2

per(Ω) → L2
per(Ω) defined in Section 4.2.2.

Property two (Continuity of the eigenvalues).
Consider the setting of the eigenvalue problem (4.2.4), and let the maps {εn}n∈N∗ be defined according

to Convention 1. Then, each function εn is Lipschitz continuous on Rd. Additionally, if kn ∈ Rd is such
that

εn,kn
6= εm,kn

∀ N∗ 3 m 6= n,
(
No energy band crossings at (kn, εn,kn

)
)
,
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then εn is locally real-analytic at kn, i.e., ∃δn > 0 such that εn is real-analytic on the open ball Bδn(kn).
A proof of this statement can, for instance, be found in [Can+20, Lemma 3.2].

The L∗-periodicity and real-analyticity away from crossings of the energy bands {εn}n∈N∗ has signifi-
cant consequences for evaluating Brillouin zone integrals involving these functions. Indeed as can readily
be deduced from [KR09], for d-dimensional periodic integrands of class C r, the uniform grid quadrature
rule converges as O

(
(∆x) r

d

)
when integrating over an entire period. For real-analytic periodic integrands,

a uniform grid quadrature rule even recovers exponential convergence (see, e.g., [TW14]). This fact is
essential in understanding the approximability of the integrals appearing in the definitions of the various
electronic properties of interest defined above, and is a key element of the higher order convergence rates
for numerical quadrature obtained in [Can+20].

Of course in practice, we typically do not have access to the exact energy bands {εn}n∈N∗ , these being
solutions to infinite-dimensional eigenvalue problems. Instead, the eigenvalue problem (4.2.4) is typically
discretized in some M -dimensional basis for specific values of k ∈ Ω∗ ⊂ Rd corresponding to the grid points
of our chosen quadrature method. This naturally raises the question of how the resulting approximate
energy bands {εapprox

n }Mi=1 compare to the exact bands {εn}n∈N∗ , and in particular whether Properties
one and two also hold for the approximate bands {εapprox

n }Mi=1, these properties being essential to the
quadrature error analysis. This is the topic of the next section.

4.3 Classical Discretization Strategies
We will now describe two well-known discretization strategies for resolving the eigenvalue problem (4.2.4).
Throughout this section, we assume the setting of Section 4.2, and we recall in particular that we will use
Convention 1 in ordering and labelling all eigenvalue problems that appear in this section.

Definition 4.3.1 (Uniform basis set).
Let Ec > 0 denote a scalar cutoff. We define the basis set BEc

0 ⊂ H1
per(Ω) as

BEc
0 :=

{
eG : G ∈ L∗ with 1

2 |G|2 < Ec

}
,

and we define the subspace spanned by this basis set as XEc
0 := span BEc

0 .

Notation 4.3.1 (Projections involving the uniform basis set).
Consider the setting of Definition 4.3.1. We denote by ΠEc : L2

per(Ω) → L2
per(Ω) the L2

per-orthogonal
projection operator onto XEc

0 , and we denote by Π⊥
Ec

its complement, i.e., Π⊥
Ec

:= I − ΠEc .
Additionally, for each k ∈ Rd we denote by H̆Ec

k the two-sided projection of the Hamiltonian fiber Hk

in XEc
0 , i.e., H̆Ec

k := ΠEcHkΠEc .
Equipped with the uniform basis sets defined through Definition 4.3.1, we can propose the following

elementary Galerkin discretization of the eigenvalue problem (4.2.4).

Uniform Galerkin discretization of the eigenvalue problem (4.2.4).
Given a fiber Hk, k ∈ Rd defined through Equation (4.2.3) and a scalar cutoff Ec > 0, we seek an

orthonormal basis
{(
ε̆Ec
n,k, ŭ

Ec
n,k
)}

⊂ R × XEc
0 of eigenvectors of H̆Ec

k :

H̆Ec
k ŭEc

n,k = ε̆Ec
n,kŭ

Ec
n,k and(

ŭEc
n,k, ŭ

Ec
m,k
)
L2

per(Ω) = δnm ∀n,m ∈ {1, . . . , dim H̆Ec
k }.

(4.3.1)

An alternative to the uniform Galerkin discretization (4.3.1) is provided by the use of so-called k-
dependent basis sets.

Definition 4.3.2 (k-dependent basis set).

109



Let Ec > 0 denote a scalar cutoff, and let k ∈ Rd. We define the basis set BEc
k ⊂ H1

per(Ω) as

BEc
k :=

{
eG : G ∈ L∗ with 1

2 |k + G|2 < Ec

}
,

and we define the subspace spanned by this basis set as XEc
k := span BEc

k . Additionally, we write MEc(k)
to denote the cardinality of BEc

k , and we refer to BEc

k as a k-dependent basis set.

Remark 4.3.1. Consider the setting of Definition 4.3.2. It can readily be seen that for a fixed Ec, the
cardinality MEc(k) of the basis BEc

k is not fixed and depends indeed on k ∈ Rd. In the sequel, we will
therefore regard MEc(·) as a piecewise constant mapping from Rd to N∗, which is moreover uniformly
bounded below and above by optimal constants M−

Ec
and M+

Ec
respectively that depend on Ec. A visual

example of the uniform and k-dependent basis sets is given in Figure 4.1.

Figure 4.1 – An example of the uniform and k-dependent basis sets. The reciprocal lattice L∗ is triangular
and indicated in dark green with the corresponding Brillouin zone Ω∗ shaded light green. The blue disk
contains all G ∈ L∗ which belong to the basis set BEc

0 while the red disk contains all G ∈ L∗ which
belong to the basis set BEc

k0
for a given k0 in the Brillouin zone Ω∗. Notice that the k-dependent basis set

BEc
k0

contains an additional four G ∈ L∗ that are missing from the uniform basis set BEc
0 . Similarly, BEc

0
contains two G ∈ L∗ that are missing from the basis set BEc

k0
.

Notation 4.3.2 (Projections involving the k-dependent basis set).
Consider the setting of Definition 4.3.2. For each k ∈ Rd, we denote by Πk,Ec : L2

per(Ω) → L2
per(Ω)

the L2
per-orthogonal projection operator onto XEc

k , and we denote by Π⊥
k,Ec

its complement, i.e.,
Π⊥

k,Ec
:= I − Πk,Ec .

Additionally, for each k ∈ Rd we denote by HEc
k the two-sided projection of the Hamiltonian fiber Hk

in XEc
k , i.e., HEc

k := Πk,EcHkΠk,Ec .

k-dependent Galerkin discretization of the eigenvalue problem (4.2.4).
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Given a fiber Hk, k ∈ Rd defined through Equation (4.2.3) and a scalar cutoff Ec > 0, we seek an
orthonormal basis

{(
εEc
n,k, u

Ec
n,k
)}

⊂ R × XEc
k of eigenvectors of HEc

k :

HEc
k uEc

n,k = εEc
n,ku

Ec
n,k and(

uEc
n,k, u

Ec
m,k
)
L2

per(Ω) = δnm ∀n,m ∈ {1, . . . ,MEc(k)}.
(4.3.2)

The Galerkin discretizations (4.3.1) and (4.3.2) are both well-posed, and a straightforward analysis
reveals the following error bound: for any fixed k ∈ Rd, any n ∈ N∗, there exists E∗ > 0 such that for
scalar cutoffs Ec > E∗, we have eigenvalue bounds of the form:

| ˘εEc
n,k − εnk| .

(
Ec
)−s and |εEc

n,k − εnk| .
(
Ec
)−s

, (4.3.3)

where the convergence rate s > 0 depends on the regularity of the effective potential V ∈ L∞
per(Ω).

Unfortunately, in spite of the availability of the error estimate (4.3.3), a closer study of the Galerkin
discretizations (4.3.1) and (4.3.2) reveals a serious deficiency that may not have been immediately ap-
parent: the approximate energy bands

{
ε̆Ec
n

}
n∈MEc (0) and

{
εEc
n

}
n∈MEc (k) do not preserve Properties

one and two of the exact energy bands {εn}n∈N∗ respectively. An example of this phenomenon is dis-
played in Figure 4.2A where we plot the exact and approximate ground state energy bands for a simple
one-dimensional example.

(A) Approximate and exact energy bands (B) The L-periodic potential V ∈ L∞
per(Ω)

Figure 4.2 – Lowest energy bands for a simple 1-D example with effective potential V ∈ L∞
per(Ω) as shown.

The effective potential satisfies the regularity property V ∈ H1−ε
per (Ω) for every ε > 0.

The core problem is that while the exact fibers Hk and Hk+G are unitarily equivalent for all k ∈ Rd
and G ∈ L∗, the same is not always true for the uniform-basis projected fibers. Indeed, H̆Ec

k = ΠEcHkΠEc

is not, in general, unitarily equivalent to H̆Ec
k+G as can readily be verified by a direct calculation in the case

V ≡ 0. Unitary equivalence is, conversely, preserved for the k-basis projected fibers HEc
k = Πk,EcHkΠk,Ec

but in this case, the rank of HEc
k changes as a function of k (recall Remark 4.3.1). This causes the

continuity argument used to prove Property two to break down.
In other words, the choice of basis set (uniform or k-dependent) represents a trade-off between the

L∗-periodicity and regularity of the resulting approximate energy bands. Both choices are obviously sub-
optimal from the point of view of numerical quadrature in the Brillouin zone, and it is therefore of great
interest to develop an alternative discretization scheme that might result in approximate energy bands
that are both L∗-periodic and of class C r for some r > 0. One such methodology which has been proposed
in the physics literature (see [Ber+95] for the original proposal and [Jan+16] for a recent presentation)
and also implemented in several quantum chemistry simulation softwares (see [Abi; Qbo]) relies on the
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idea of modifying the ‘diagonal’ part of the fiber Hk in a controlled manner. A systematic description of
this discretization method is the subject of the next section.

4.4 Operator Modification Approach
We begin this section by defining a one-dimensional “blow-up” function that will be central to the con-
struction of a modified Hamiltonian operator. Throughout this section, we will assume the settings of
Sections 4.2 and 4.3.

Definition 4.4.1 (Blow-up function).
Let m ∈ N, let f2 denote the quadratic monomial, i.e., f2(x) = x2 for all x ∈ R, and denote

by h :
[ 1

2 , 1
)

→ R a function with the following four properties:

1. It holds that h ∈ Cm
( 1

2 , 1
)
.

2. It holds that limx→1− ((1 − x)m h(x)) = +∞.

3. It holds that h(x) ≥ f2(x) for all x ∈
( 1

2 , 1
)
.

4. For all j ∈ {0, . . . ,m} it holds that h(j) ( 1
2
)

= f
(j)
2
( 1

2
)
, where h(j)(·) and f

(j)
2 (·) denote the jth

derivative of h and f2 respectively.

Then we define the blow-up function G : R → R as the mapping given by

G (x) =

f2(x) for |x| ∈ [0, 1
2 ] ∪ [1,∞),

h(|x|) for |x| ∈
( 1

2 , 1
)
,

(4.4.1)

where we have suppressed the dependency of G on m and h by assuming once and for all that m and h

are fixed for the remainder of our analysis.

Consider Definition 4.4.1 of the blow-up function G . We emphasize three properties of G that will be
useful in the sequel: first, that it is of class Cm on the interval [0, 1) ⊂ R; second, that it is point-wise
bounded below by the quadratic map x 7→ x2 on all of R, and third that it blows up as x → 1− at a rate
greater than 1

(1−x)m .

Remark 4.4.1 (Blow-up functions in the physics literature). It is pertinent at this point to contrast our
rather general definition of the blow-up function G with those that have been proposed in the literature
(see [Ber+95; Jan+16]) and implemented in electronic structure calculation codes (see [Abi; Qbo]). In
fact, the functions G̃ proposed in [Ber+95; Jan+16] are not ‘blow-up’ functions at all, in the sense that
limx→1− G̃ (x) 6= +∞. Instead, both papers propose the use of the error function to construct G̃ such that
limx→1 G̃ (x) = c � 1 but with c < ∞. The implementation in the quantum chemistry code QBOX [Qbo]
is based on similar ideas. In contrast, the software suite ABINIT [Abi] employs a true ‘blow-up’ function
that satisfies the conditions of Definition 4.4.1 for m = 1.

We will now propose a modified Galerkin discretization for the eigenvalue problem (4.2.4). To this
end, we first require a definition, and we recall in particular Definition 4.3.2 of the k-dependent basis set
on L2

per(Ω) and Notation 4.3.2.

Definition 4.4.2 (Modified Hamiltonian operator).
Let Ec > 0 and let the blow-up function G be defined according to Equation (4.4.1). For each k ∈ Rd,

we define the operator H̃G ,Ec
k : XEc

k → XEc
k as the mapping with the property that

H̃G ,Ec
k := Πk,Ec

(
Ec G

(
| − ı∇ + k|√

2Ec

)
+ V

)
Πk,Ec . (4.4.2)
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Remark 4.4.2. Consider the setting of Definition 4.4.2. In Equation (4.4.2), the term
G
(

|−ı∇+k|√
2Ec

)
should be understood in the sense of functional calculus. In particular, given some

Φ =
∑

G∈L∗
1
2 |k+G|2<Ec

Φ̂GeG ∈ XEc
k ⊂ H2

per(Ω), we have

H̃G ,Ec
k Φ = Πk,Ec

( ∑
G∈L∗

1
2 |k+G|2<Ec

Φ̂G

(
EcG

(
|G + k|√

2Ec

)
+ V

)
eG

)
.

Additionally, recalling the definition of the Bloch-Floquet fibers Hk, k ∈ Rd given by Equation
(4.2.3), we notice that for each k ∈ Rd, thanks to the definition of the blow-up function G , we have
that H̃G ,Ec

k > HEc
k := Πk,EcHkΠk,Ec , i.e., for all Φ ∈ XEc

k ⊂ H1
per(Ω) it holds that(

Φ, H̃G ,Ec
k Φ

)
L2

per(Ω)
>
(

Φ,HEc
k Φ

)
L2

per(Ω)
.

k-dependent modified Galerkin discretization of eigenvalue problem (4.2.4)
Let Ec > 0, let the blow-up function G be defined according to Equation (4.4.1), and let the modified

Hamiltonian operator H̃G ,Ec
k , k ∈ Rd be defined through Definition 4.4.2. We seek an L2

per(Ω)-orthonormal
basis

{(
ε̃Ec
n,k, ũ

Ec
n,k
)}

⊂ R × XEc
k of eigenmodes of H̃G ,Ec

k :

H̃G ,Ec
k ũEc

n,k = ε̃Ec
n,kũ

Ec
n,k and(

ũEc
n,k, ũ

Ec
m,k
)
L2

per(Ω) = δnm ∀n,m ∈ {1, . . . ,MEc(k)}.
(4.4.3)

The eigenvalue problem (4.4.3) can now be solved for different choices of the parameter Ec > 0 and
blow-up function G . Figure 4.3 displays the approximations of the lowest energy band k 7→ ε1,k for two
different choices of G and the same Ec > 0 and effective potential V ∈ L∞

per(Ω) as chosen to produce
Figure 4.2. The most interesting feature of Figure 4.3 is the fact that– in contrast to the approximate
energy band εEc

1 – the approximate energy band ε̃Ec
1 remains L∗-periodic, while also appearing to no longer

be discontinuous.

(A) Approximate and exact energy bands

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

(B) Examples of blow-up functions h.

Figure 4.3 – Lowest energy bands for the same 1D effective potential V used to produce Figure 4.2. The
blow-up functions were of the form h(x) = C(1 − x)−p in the vicinity of 1−, with C > 0.

In the next section, we will present our two main results on the analysis of the modified discretization
(4.4.3). Our first result is on the error analysis of this modified discretization where we prove that the
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approximate modified energy bands {ε̃Ec
n }n∈N∗ converge with the expected asymptotic rate to the exact

energy bands {εn}n∈N∗ in a point-wise sense when the cutoff energy Ec goes to infinity. Our second result
is a precise characterization of regularity properties of each energy band ε̃Ec

n with respect to blow-up
functions of different singularity orders.

4.5 Main Results on the Analysis of the Operator Modification
Approach

Throughout this section, we will assume the setting of Section 4.4. We recall in particular Definition 4.4.1
of the blow-up function G as well as the modified Hamiltonian matrices {H̃G ,Ec

k }Ec>0,k∈Rd defined through
Equation (4.4.2).

Our first main result concerns the error analysis of the k-dependent modified Galerkin discretization
(4.4.3) of the exact eigenvalue problem (4.2.4).

Theorem 4.5.1 (Error estimate for approximate, modified energy bands).
Consider the settings of the exact eigenvalue problem (4.2.4) and the modified discretization (4.4.3)

with a blow-up function G satisfying the conditions in Definition 4.4.1. Assume that the effective potential
V ∈ L∞

per(Ω)∩Hr
per(Ω) for some r > d

4 −1. Let n ∈ N∗, and for each k ∈ Rd, let the subspace Yk
n ⊂ H2

per(Ω)
be defined as the span of the first n eigenfunctions of the exact fiber Hk, i.e.,

Yk
n := span{uj,k : j ∈ {1, . . . , n}}.

Then there exists E∗
c > 0 and a constant C > 0 such that for every Ec > E∗

c and all k ∈ Rd it holds that

0 6 ε̃Ec
n,k − εn,k 6

(
C
Ec

)r+1− d
4

max
Φ∈Yk

n

‖Φ‖L2
per(Ω)=1

‖Φ‖2
Hr+2

per (Ω). (4.5.1)

An immediate consequence of Theorem 4.5.1 is that the modified energy bands {ε̃Ec
n }n∈N∗ converge

at the same asymptotic rate as the unmodified energy bands {εEc
n }n∈N∗ , with respect to Ec, to the exact

bands {εn}n∈N∗ . Additionally, Theorem 4.5.1 informs us that the approximate energy bands {ε̃Ec
n }n∈M−

Ec

are bounded functions of Rd (recall from Remark 4.3.1 that M−
Ec

denotes the minimal dimension of the
k-dependent approximation space XEc

k ). This latter fact will be of use in the proof of our second main
result (see Section 4.7).

Next, we present our second main result, which concerns the regularity properties of these energy
bands.

Theorem 4.5.2 (Regularity of approximate, modified energy bands).
Consider the setting of the k-dependent modified discretization (4.4.3) with a blow-up function G sat-

isfying the conditions in Definition 4.4.1. Let Ec > 0 be such that M−
Ec
> 0, and let n ∈ {1, . . . ,M−

Ec
}. If

k0 ∈ Rd is such that

ε̃Ec
n,k0

6= ε̃Ec

ñ,k0
∀ñ ∈ {1, . . . ,M−

Ec
} with ñ 6= n

(
no band crossings at (k0, ε̃

Ec
n,k0

)
)
,

then the approximate energy band ε̃Ec
n is of class Cm in a neighborhood of k0.

If on the other hand, k0 ∈ Rd is such that

∃ñ ∈ {1, . . . ,M−
Ec

} with ñ 6= n : ε̃Ec
n,k0

= ε̃Ec

ñ,k0

(
band crossing at (k0, ε̃

Ec
n,k0

)
)
,

then the approximate energy band ε̃Ec
n isLipschitz continuous in a neighborhood of k0 if m > 1,

continuous in a neighborhood of k0 otherwise.
(4.5.2)
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Theorem 4.5.2 indicates that by designing a blow-up function G that satisfies Properties (1)-(4) from
Definition 4.4.1, and in particular has a blow-up singularity of the correct order, we can obtain modified
energy bands {ε̃Ec

n }n∈N∗ of arbitrarily high regularity away from band crossings. Moreover, thanks to
Theorem 4.5.1, we also have a precise a priori characterization of the error in a given band ε̃Ec

n with
respect to varying cutoff energies Ec.

In order to prove the continuity result in Theorem 4.5.2, we will make use of the following general
lemma, which is also valid for non-Hermitian matrices and could be used to extend the present analysis
to more advanced electronic structure models such as the so-called GW model (see [CGS16] for a mathe-
matical analysis of the latter model). Note however that the continuity result in Theorem 4.5.2 can also
be obtained by using arguments specific to Hermitian matrices based on spectral inequalities and residual
estimates.

Lemma 1. Let M ∈ N∗, let p ∈ N∗ be such that 1 ≤ p < M , and let (Hn)n∈N ∈
(
CM×M)N be a sequence

of matrices that admit the block decomposition

Hn =

 An Bn

B̃n Cn

 ,
where An ∈ Cp×p, Bn ∈ Cp×(M−p), B̃n ∈ C(M−p)×p, and Cn ∈ C(M−p)×(M−p) are sub-matrices such that

∃A ∈ Rp×p such that lim
n→∞

‖An − A‖2 = 0,

sup
n∈N

‖Bn‖2 < ∞, sup
n∈N

‖B̃n‖2 < ∞,

Cn is invertible for each n and lim
n→∞

‖C−1
n ‖2 = 0,

with ‖ · ‖2 denoting the usual matrix 2-norm. Then

1. for every ρ > 0 sufficiently small, there exists N(ρ) ∈ N such that for any eigenvalue λA of the
matrix A with algebraic multiplicity Q ∈ N∗ and all n > N(ρ), the open disc Bρ

(
λA) ⊂ C contains

exactly Q eigenvalues of the matrix Hn counting algebraic multiplicities;

2. for every Υ > 0 sufficiently large, there exists Ñ(Υ) ∈ N such that for all n > Ñ(Υ), there are
exactly M − p eigenvalues of Hn with magnitude larger than or equal to Υ.

Before stating the proofs of Theorems 4.5.1 and 4.5.2 and Lemma 1, we will present some numerical
results on the use of the operator modification approach that we have described. The aim of these
numerical studies is to provide numerical support for the conclusions of our main results Theorems 4.5.1
and 4.5.2. These numerical studies are the subject of the next section.

4.6 Numerical Results
Throughout this section, we assume the setting described in Sections 4.2-4.5. Our goal is now two-fold.
First, we wish to present numerical results supporting the conclusions of Theorem 4.5.1 and Theorem 4.5.2.
Second, we would like to demonstrate the effectiveness of the operator modification methodology described
in Section 4.4 for computing the energy bands of realistic materials such as graphene and face-centered
cubic (FCC) silicon crystals.

4.6.1 Validation of theoretical results in one spatial dimension

We begin by considering a simple one-dimensional geometric setting. We set L = Z which re-
sults in L∗ = 2πZ, Ω = [− 1

2 ,
1
2 ) and Ω∗ = [−π, π). The effective potential V is chosen such that

V ∈ L∞
per(Ω)∩H1−ε

per (Ω) for all ε > 0. Figure 4.2B in Section 4.3 displays a plot of the chosen potential and
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demonstrates that the magnitude of V remains between -50 and 200. For all subsequent simulations, the
eigenvalue solver tolerance was set to machine (double) precision and reference eigenvalues {εn,k}n∈N∗, k∈R
were computed using the uniform Galerkin discretization (4.3.1) with Ec = 72, 000. Unless stated other-
wise, the approximate bands were computed using Ec = 750 and k-point mesh-width equal to ∆ = 10−3.
For comparison, the average kinetic energy of the reference lowest energy band is about 12. All blow-up
functions G have regularity C 6 on the interval (0, 1) and are of the form C(1 − x)−p in the vicinity of 1−,
with C > 0.

Error convergence with respect to Ec
Our first set of numerical experiments is designed to demonstrate the dependence of the eigenvalue

errors in the operator modification approach as a function of the discretization parameter Ec. We compute
the lowest energy bands ε̃Ec

1 and εEc
1 for different values of the cutoff energy Ec. Additionally, assuming

a single electron per unit cell, we also compute the Fermi levels µ̃Ec
F , µEc

F corresponding to the energy
bands ε̃Ec

1 and εEc
1 respectively. Note that the band diagrams of periodic physical systems such as this are

well-defined only up to an arbitrary additive shift since the potential V is itself defined up to an additive
constant in solid-state physics. In band structure calculations, this reference is usually taken as the Fermi
level of the system. Therefore, in order to evaluate the accuracy of the modified operator methods we
consider the Fermi-level shifted errorsˆ

Ω∗

∣∣∣(εn,k − µF) −
(
ε̃Ec
n,k − µ̃Ec

F

)∣∣∣ dk and
ˆ

Ω∗

∣∣∣(εn,k − µF) −
(
εEc
n,k − µEc

F

)∣∣∣ dk.
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0

(A) Fermi level-adjusted error of the k-dependent and
modified energy bands as a function of Ec.

(B) Lowest modified energy bands for the k-dependent
discretization and modified operator discretization.

Figure 4.4 – Fermi level-adjusted error in lowest energy bands as a function of Ec (left) and the lowest
energy bands for different blow-up functions of the form h(x) = C(1 − x)−p in the vicinity of 1−. Note
that εEc

1 has a jump discontinuity, while the modified energy bands ε̃Ec
1 are at least continuous.

Figure 4.4A displays our results for two different choice of blow-up function G : R → R, one of which
has a singularity blow-up of order | · |− 1

2 and thus satisfies Properties (1)-(4) in Definition 4.4.1 for m = 0,
and the other with a singularity blow-up of order | · |− 3

2 which thus satisfies Properties (1)-(4) in Definition
4.4.1 for m = 1. We observe from Figure 4.4A that the asymptotic convergence rate with respect to Ec of
both the k-dependent Galerkin discretization scheme (4.3.2) and the modified discretization scheme (4.4.3)
are identical, and thus the use of the operator modification approach does not result in any asymptotic
degradation of the discretization error. Additionally, we see that for a given cutoff energy Ec, the error of
the k-dependent Galerkin discretization (4.3.2) is strictly larger than that of the modified discretization
(4.4.3).

Regularity of energy bands as a function of blow-up function singularity
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(A) First derivative of the lowest modified energy
bands for different choices of the blow-up function G .
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(B) Second derivative of the lowest modified energy
bands for a higher order blow-up function G .

Figure 4.5 – First and second derivatives of the lowest energy bands for different blow-up functions of the
form h(x) = C(1 − x)−p in the vicinity of 1−, with C > 0

. (Left) The energy band ε̃Ec
1 produced using p = 3

2 is of class C 1(R) since it has a kink in the first
derivative. (Right) The energy band ε̃Ec

1 produced using p = 5
2 is of class C 2(R) since it has a kink in

the second derivative.

Our next set of numerical simulations is designed to support the conclusion of Theorem 4.5.2 concerning
the regularity of the energy bands produced by the modified Galerkin discretization (4.4.3). We consider
the regularity of the lowest energy band ε̃Ec

1 for cutoff energy Ec = 750 and three different choices of
blow-up functions G : R → R. More precisely, we consider blow-up functions G that satisfy Properties
(1)-(4) from Definition 4.4.1 for m = 0, 1, and 2 respectively. Our theoretical results indicate that the
resulting energy bands should be of class C 0(R), C 1(R) and C 2(R) respectively since there are no energy
band crossings for non-trivial effective potentials in one dimension (see, e.g., [AM76, Chapters 8-9]).
Figures 4.4B, 4.5A, and 4.5B display our results and show perfect agreement with the conclusions of
Theorem 4.5.2.

Considering the energy bands displayed in Figure 4.4B, it is natural to ask if the use of a blow-up
function that satisfies Properties (1)-(4) from Definition 4.4.1 only for m = 0 results in energy bands
that are Lipschitz continuous rather than simply continuous, and a similar question can be asked for the
derivatives of the energy bands when using blow-up functions with stronger singularities.

In order to answer this question, we compute the lowest energy band ε̃Ec
1 resulting from the modified

discretization (4.4.3) for cutoff energy Ec = 750 and four different choices of blow-up functions G . The
blow up functions G are constructed such that they satisfy Properties (1), (3) and (4) from Definition
4.4.1 for m = 6, and such that the singularity of G (x) at x = 1 is of order | · |−p for p = 1

5 ,
2
5 ,

3
5 , and 4

5
respectively. Figure 4.6A displays the absolute values of the first derivatives of the resulting lowest energy
band ε̃Ec

1 for a k-point mesh-width ∆ = 10−4. The figure indicates that the derivative of ε̃Ec
1 exhibits

peaks at the two points of discontinuity, although the magnitude of the peaks at the points of discontinuity
seems to decrease with increasing Ec. In fact, although we do not display the plot here, the magnitudes
of these peaks increase as the mesh width ∆ is decreased, which indicates that the first derivative is truly
unbounded at these points.

Regularity of energy bands as a function of the cutoff energy
The goal of the final set of numerical experiments in this subsection is to explore, for a fixed choice

of blow-up function G : R → R, how the regularity of the modified energy bands {ε̃Ec
n }n∈N∗ varies as a

function of the cutoff energy Ec. To this end, we consider once again the regularity of the lowest energy
band ε̃Ec

1 resulting from the modified Galerkin discretization (4.4.3). For these experiments, we set the
k-point mesh-width ∆ = 10−4, and use a blow-up function G with blow-up of order | · |− 1

2 .
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(A) First derivative of the lowest energy bands for dif-
ferent choices of blow-up function G .
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(B) First derivative of the lowest energy band for dif-
ferent choices of cutoff energies Ec.

Figure 4.6 – Non-Lipschitz energy bands (m = 0): (Left) First derivative of the lowest energy band for
different blow-up functions of the form h(x) = C(1 −x)−p for p < 1 in the vicinity of 1−, with C > 0. The
cutoff energy was taken as Ec = 750. (Right) First derivative of the lowest energy band for different choices
of cutoff energies Ec and with a blow-up function of the form h(x) = C(1 − x)− 1

2 in the vicinity of 1−.
Although not shown here, in both cases the magnitudes of the peaks increase when k-point mesh-width
is decreased indicating truly unbounded derivatives.

Figure 4.6B displays the first derivative of the energy band ε̃Ec
1 for different values of Ec. The blow-up

function chosen for these simulations satisfies Properties (1)-(4) from Definition 4.4.1 only for m = 0, so
Theorem 4.5.2 indicates that the energy bands should be continuous and not differentiable. It is readily
seen that this is indeed the case, although the first derivative of ε̃Ec

1 is noticeably regularized by increasing
the value of Ec. In fact, the finite magnitude of the peak is a numerical artifact since (although not shown
here) the magnitude of the peaks increases as the k-point mesh-width is decreased, which indicates that
the derivative is truly unbounded for finite Ec at these points. Note that the points of discontinuity occur
at different k-points depending on the chosen energy cutoff Ec.

4.6.2 Numerical experiments on real materials

We now investigate the effectiveness of the operator modification approach introduced in Section 4.4
on two realistic crystalline systems: a single layer of graphene and face-centered cubic (FCC) crystalline
silicon. All subsequent computations are performed using the plane-wave density functional theory (DFT)
package DFTK.jl [HLC21] in the Julia language [Bez+17]. The numerical results of this section can
be reproduced by downloading the repository [Mod] and following the instructions therein. The exact
definition of the blow-up function used to produce these numerical results is provided in the utils/blowup.jl
file. A modified kinetic approach guaranteeing C 2 regularity has been directly integrated into the DFTK.jl
package available at [Dft].
Remark 4.6.1. Two comments are in order:

• DFTK.jl makes use of norm-conserving pseudopotentials consisting of a local component (a periodic
multiplication operator) and a non-local component (a periodized finite-rank operator). The Kohn-
Sham Hamiltonians obtained with DFTK.jl are therefore not Schrödinger operators of the form
(4.2.1) with V a periodic function. Our theoretical results can easily be extended to handle general
pseudopotentials at the price of slightly more cumbersome proofs. For the sake of simplicity, we
chose to restrict our analysis to the case of purely local potentials;
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• graphene is a real material living in the three-dimensional physical space, but its Bravais lattice
is the two-dimensional hexagonal lattice, hence the name 2D materials used to refer to graphene,
hexagonal boron nitride, transition metal dichalcogenides, phosphorene, and other atomic-thin lay-
ered materials. The Bloch fibers of a periodic 2D material are labelled by a 2D quasi-momentum
k ∈ R2 and can be expressed as

Hk = 1
2(−i∇x‖ + k)2 − 1

2∂
2
x3

+ V

where x‖ = (x1, x2) denotes the in-plane position, and x3 the out-of-plane coordinate. The operators
Hk act on L2

per(Ω) where Ω = ω × R with ω ⊂ R2 being the Wigner-Seitz cell of the 2D Bravais
lattice. They do not have compact resolvents and do not admit spectral decompositions of the form
(4.2.4). However, the Bloch fibers of the Kohn-Sham Hamiltonian of a real 2D material have discrete
eigenvalues below the bottom of their essential spectrum forming the so-called valence bands and
low-energy conduction bands. Our theoretical results can thus easily be extended to 2D materials.

Numerical setting
We begin by computing a reference ground-state effective potential using a Kohn-Sham DFT self-

consistent field (SCF) procedure with cutoff energy Eref
c = 30 Ha and a fine Monkhorst-Pack k–point grid

with 12 points in each sampled dimension. The SCF tolerance is set to machine (double) precision. We
choose to work with a Perdew-Burke-Ernzerhof (PBE) functional [PBE96] that is standard in solid state
electronic structure computations and Hartwigsen-Goedecker-Teter-Hutter separable dual-space Gaussian
pseudopotentials [HGH98]. In a second step, the obtained effective potential is used to construct the
reference Hamiltonian HEref

c
k whose eigenvalues will serve as reference data.

The same potential is used to construct the Hamiltonian operator HEc
k defined through (4.3.2), and

the modified Hamiltonian operator H̃Ec
k defined through Equation (4.4.3) for a custom set of k–points

and for a fixed Ec � Eref
c . The chosen k-points are located on the band-structure paths automatically

generated by the Brillouin.jl package using the crystallography based method introduced in [Hin+17].
For reference, the k-paths in the Brillouin zone of graphene and FCC silicon and the corresponding band
structures are displayed in Figures 4.7 and 4.8 respectively.

Regularity of energy bands as a function of blow-up function singularity
We choose a very low Ec = 5 Ha in order to clearly highlight the expected irregularities of the energy

bands of the standard Hamiltonian operator HEc
k . Figure 4.9 displays the abrupt changes in the size of the

k-dependent plane-wave basis BEc
k along the band-structure paths of graphene and FCC silicon for this

choice of Ec. As in the 1D case, the energy bands produced by the k-dependent Galerkin discretization
(4.3.2) are highly irregular, as we read from Figures 4.10A and 4.11A. On the other hand, the modified
energy bands produced by the Galerkin discretization (4.4.3) (also displayed in Figures 4.10 and 4.11)
appear to be smooth in accordance with the choice of blow-up function G and in agreement with the
theoretical result of Theorem 4.5.2.

Let us remark that for small values of Ec, the low-energy eigenfunctions un,k have non-negligible
projections on Fourier modes eG ∈ BEc

k with ‘modified’ kinetic energy that is much higher than the
standard kinetic energy. This artificially higher kinetic energy is due to the fact that the blow-up function
G diverges from the x 7→ x2 curve when x goes to 1. As a consequence, the modified-Hamiltonian energy
bands appear significantly over-estimated in comparison to the approximate energy bands produced by
the standard Hamiltonian matrix HEc

k . As stated previously however, the band diagrams of the considered
periodic physical systems are defined up to an arbitrary additive constant, so that a mere shift in energies is
unimportant. On the other hand, for large values of Ec, the Fourier modes eG in BEc

k with over-estimated
kinetic energies do not contribute much to the Fourier expansions of the low-energy eigenfunctions un,k.
This suggests that the proper range of application of the modified-operator approach is typically in the
regime where Ec is not too small so that the modified discretization scheme matches the accuracy of the
standard Galerkin discretization while ensuring the targeted regularity.

Regularity of energy bands as a function of the volume of the unit cell
Another possible application of the modified-operator approach concerns the computations of energy

bands as a function of the volume of the unit cell, that can be used to estimate the macroscopic volumetric
mass density of a crystalline material or its bulk modulus [Kax03, Chapter 5.6]. The size of the k-dependent
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The graphene k-path in the Brillouin zone. The graphene reference band structure.

Figure 4.7 – Graphene k-path (left) and the corresponding band structure (right). The paths are auto-
matically generated by the Brillouin.jl package based on crystallographic considerations. The red (resp.
blue) arrows display the Cartesian coordinate axes (resp. the reciprocal basis vectors). All bands are
shifted so that the Fermi level appears at zero Hartree on the graph. The red box shows the part of the
band diagram on which Figure 4.10 will focus.

discretization basis at a given k-point depends on the unit cell volume through its associated reciprocal
lattice, so that within the standard Galerkin approximation, the energy per unit volume is a rough function
of the crystalline parameters. For both graphene and FCC silicon, the unit cell is parameterized by a
single lattice parameter a. Figure 4.12 displays the energy of graphene and FCC silicon per unit volume
as a function of a around the experimental value a0 of the equilibrium lattice parameter. In both cases,
we observe high oscillations of the energy per unit volume. We see that the modified-operator approach
produces much smoother energy curves.

Effect of the operator modification approach on the computational cost
For the final set of numerical experiments, we evaluate the impact of the operator modification strategy

on the total computational cost of solving the underlying Bloch fiber eigenvalue problems. To do so, we
consider again Graphene and FCC crystalline silicon, and we compute the total number of linear solver
iterations required to compute, for a given Ec, the first 8 eigenvalues in the ‘modified’ discrete eigenvalue
problem (4.4.3) for all k-points on a Monkhorst-Pack grid in the Brillouin zone. Note that the eigensolver
is considered converged when the Frobenius distance between consecutive one-body density matrices falls
bellow 10−8. Our results are shown in Figures 4.13A and 4.13B and indicate that while the number
of iterations does increase with the blow-up rate, the increase is not catastrophic and largely ranges
between 5% and 25% for the blow-up rates considered in this paper. Further testing indicates however
that a combination of very high blow-up rates and very high values of Ec can considerably worsen the
convergence of the eigensolver, which suggests again that the proper range of application of this operator
modification approach is likely in the moderate blow-up and medium Ec regime.

4.7 Proofs of the Main Results
We will begin with the proof of the a priori error estimate Theorem 4.5.1.

Proof of Theorem 4.5.1.
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(A) The silicon k-path in the Brillouin zone. (B) The silicon reference band structure along this
path.

Figure 4.8 – FCC crystalline silicon k-path (left) and the corresponding band structure (right). The paths
are automatically generated by the Brillouin.jl package based on crystallographic considerations. Red and
blue arrows display the Cartesian coordinate axes and the reciprocal basis vectors respectively. All bands
are again shifted so that the Fermi level appears at zero Hartree on the graph, and the red box shows the
part of the band diagram on which Figure 4.11 focuses.

The lower bound in Inequality (4.5.1) follows directly from Remark 4.4.2 so we need only prove the
upper bound. Also, since both ε̃Ec

n and εn are L∗-periodic functions on Rd, it suffices to establish the error
estimate (4.5.1) only for k ∈ Ω∗.

From Definition 4.3.2 of the k-dependent basis set BEc
k (see also Remark 4.3.1), we deduce the existence

of an E′
c > 0 such that for all k ∈ Rd, we have that n = dim Yk

n 6M−
E′

c
where we recall that M−

E′
c

denotes
the minimal size of the basis B

E′
c

k over all k ∈ Rd. Thus, for each k ∈ Ω∗ there also exists Ek
c > E′

c such
that

Yk,Ec
n := {Ψ := Πk,Ek

c
Φ: Φ ∈ Yk

n},

is an n-dimensional subspace of H1
per(Ω). We set Ẽc := supk∈Ω∗ Ek

c . Using now the min-max theorem, we
deduce that for all Ec > Ẽc and any k ∈ Ω∗ it holds that

ε̃4Ec
n,k 6 max

Ψ∈Yk,Ec
n

‖Ψ‖L2
per(Ω)=1

(
Ψ, H̃G ,4Ec

k Ψ
)
L2

per(Ω)
. (4.7.1)

Notice here that we consider the modified energy band ε̃4Ec
n,k which corresponds to the modified Hamiltonian

matrix H̃G ,4Ec
k . The appearance of the factor 4 is linked to Definition 4.4.1 of the blow-up function

G : R → R in which we impose that G (x) = x2 for |x| ∈ [0, 1
2 ] ∪ [1,∞). Indeed, as we shall demonstrate

below, considering the modified Hamiltonian matrix H̃G ,4Ec
k rather than H̃G ,Ec

k allows us to obtain the
required error estimates through relatively simple arguments. Let us nevertheless remark that any pre-
factor greater than or equal to 4 is equally valid for the subsequent arguments.
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Figure 4.9 – Distance to the mean value of MEc(·) along standard k-path with a small Ec = 5 Ha, showing
the abrupt changes in the cardinality of the k-dependent plane-wave basis set BEc

k . The test cases are
(left) a single layer of graphene and (right) FCC crystalline silicon. The k-path is automatically generated
by DFTK.jl using the Brillouin.jl package.

Returning to Inequality (4.7.1), we deduce that for all Ec > Ẽc and any k ∈ Ω∗ it holds that

ε̃4Ec
n,k 6 max

Φ∈Yk
n

‖Πk,Ec Φ‖L2
per(Ω)=1

(
Φ,
(

Πk,EcH̃G ,4Ec
k Πk,Ec

)
Φ
)
L2

per(Ω)

6 max
Φ∈Yk

n

‖Πk,Ec Φ‖L2
per(Ω)=1

(
Φ,
(

Πk,EcH̃G ,4Ec
k Πk,Ec − Hk

)
Φ
)
L2

per(Ω)

+ max
Φ∈Yk

n

‖Πk,Ec Φ‖L2
per(Ω)=1

(
(Φ,HkΦ)L2

per(Ω) − εn(k)‖Φ‖2
L2

per(Ω)︸ ︷︷ ︸
6 0

+εn(k)‖Φ‖2
L2

per(Ω)

)
.

It therefore follows that for all Ec > Ẽc and for any k ∈ Ω∗ we have

ε̃4Ec
n,k − εn,k 6 max

Φ∈Yk
n

‖Πk,Ec Φ‖L2
per(Ω)=1

(
Φ,
(

Πk,EcH̃G ,4Ec
k Πk,Ec − Hk

)
Φ
)
L2

per(Ω)︸ ︷︷ ︸
:=(I)

+ max
Φ∈Yk

n

‖Πk,Ec Φ‖L2
per(Ω)=1

εn(k) ‖Π⊥
k,Ec

Φ‖2
L2

per(Ω)︸ ︷︷ ︸
:=(II)

.
(4.7.2)

Let us first simplify the term (I) for an arbitrary Φ ∈ Yk
n and k ∈ Ω∗. We begin by rewriting the term

(I) as

(I) =
(

Φ,
(

Πk,EcH̃G ,4Ec
k Πk,Ec − HEc

k

)
Φ
)
L2

per(Ω)
+
(

Φ,
(

HEc
k − Hk

)
Φ
)
L2

per(Ω)
. (4.7.3)

We claim that the first term on the right hand side is identically zero. Indeed, recalling Definition 4.3.2
of the basis BEc

k as well as the definitions of the exact fiber and modified Hamiltonian matrix given by
Equations (4.2.3) and (4.4.2) respectively, and using the fact that Πk,4EcΠk,Ec = Πk,Ec = Πk,EcΠk,4Ec we
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Figure 4.10 – Comparison of the first and second derivatives of the second band of graphene between
points M and K of the band-structure for the k-dependent and modified discretization schemes.
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Figure 4.11 – Comparison of the first and second derivatives of the first band of silicon between points X
and U of the band-structure for the k-dependent and modified discretization schemes.

deduce that (
Πk,EcH̃G ,4Ec

k Πk,Ec − HEc
k

)
Φ

= Πk,Ec

( ∑
G∈L∗

1
2 |k+G|2<Ec

Φ̂G

(
4EcG

(
|k + G|√

8Ec

)
− 1

2 |G + k|2
)
eG

)
.

Since 1
2 |k + G|2 < Ec =⇒ |k+G|√

8Ec
< 1

2 , we obtain from Definition 4.4.1 of G that(
Πk,EcH̃G ,4Ec

k Πk,Ec − HEc
k

)
Φ = 0, (4.7.4)

which implies the claimed result.
The simplification of the second term on the right is classical but we perform it for the sake of

completeness. For ease of exposition, in the sequel we will use C > 0 to denote a generic constant whose
value may change from step to step but that remains independent of k ∈ Rd, Ec > 0, and Φ ∈ Yk

n .
Let us begin by noting that since HEc

k = Πk,EcHkΠk,Ec by definition, Equation (4.7.3) implies that

(I) = −2
(
Φ,
(
Π⊥

k,Ec
HkΠk,Ec

)
Φ
)
L2

per(Ω) −
(
Φ,
(
Π⊥

k,Ec
HkΠ⊥

k,Ec

)
Φ
)
L2

per(Ω)

6 2‖Π⊥
k,Ec

VΠk,EcΦ‖L2
per(Ω)‖Π⊥

k,Ec
Φ‖L2

per(Ω) − min{ε1(k), 0}‖Π⊥
k,Ec

Φ‖2
L2

per(Ω), (4.7.5)
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Figure 4.12 – Energy per unit volume of graphene and FCC silicon as a function of the lattice parameter
a for the k-dependent and modified discretization schemes (Equations (4.3.2) and (4.4.3) respectively).
The blow-up function G has a blow-up of order | · |− 3

2 and the cutoff energy is set to Ec = 5 Ha. For the
sake of legibility, the total energy of the system for the modified Hamiltonian is shifted to the mean value
of the standard Hamiltonian total energy over the sample of parameters a. The empirical value a0 of the
equilibrium lattice parameter is also indicated.

We simplify this last estimate term-by-term. Since V ∈ Hr
per(Ω), we deduce that each exact eigenfunc-

tion un,k, n ∈ N∗ is an element of Hr+2
per (Ω) (see, e.g., [CCM10]). It follows that Φ ∈ Hr+2

per (Ω) so that we
can write

‖Π⊥
k,Ec

Φ‖2
L2

per(Ω) =
∑

G∈L∗
1
2 |k+G|2>Ec

|Φ̂G|2 6

(
1

2Ec

)r+2 ∑
G∈L∗

1
2 |k+G|2>Ec

(
1 + |k + G|2

)r+2 |Φ̂G|2

6

(
C
Ec

)r+2 ∑
G∈L∗

1
2 |k+G|2>Ec

(
1 + |G|2

)r+2 |Φ̂G|2 (4.7.6)

6

(
C
Ec

)r+2
‖Φ‖2

Hr+2
per (Ω),

where the second line follows from the fact that k ∈ Ω∗ so that, in particular,
|k + G| < diam(Ω∗) + |G| ∀G ∈ L∗.

In order to simplify the term in Inequality (4.7.5) involving the potential V , we will use similar tactics.
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Figure 4.13 – The total number of eigensolver iterations required to solve the unmodified eigenvalue
problem (4.3.2) and ‘modified’ eigenvalue problem (4.4.3) for all k-points on a Monkhorst-Pack grid with
a fixed Kohn-Sham reference potential. Results for different choices of blow-up function G and values
of Ec are displayed for both graphene and FCC crystalline silicon. The eigensolver is an LOPBCG
algorithm [HL06] with a simple version of the diagonal Tetter-Payne-Allan preconditioner [TPA89]. Both
are default choices in the DFTK.jl package, and can be found in the DFTK.jl/src/eigen folder. Note
that the eigensolver algorithm is considered converged when the Frobenius distance between consecutive
one-body density matrices falls bellow 10−8.

As a first step, we make use of the fact that V ∈ L∞
per(Ω) is a multiplicative operator so that we may write

‖Π⊥
k,Ec

VΠk,EcΦ‖2
L2

per(Ω) =
∑

G′∈L∗
1
2 |k+G′|2>Ec

∣∣∣∣∣ ∑
G∈L∗

1
2 |k+G|2<Ec

V̂G′−GΦ̂G

∣∣∣∣∣
2

6
∑

G′∈L∗
1
2 |k+G′|2>Ec

∣∣∣∣∣ ∑
G∈L∗

1
2 |k+G|2<Ec

1
∑

G∈L∗
1
2 |k+G|2<Ec

|V̂G′−G|2|Φ̂G|2
∣∣∣∣∣,

6
∑

G′∈L∗
1
2 |k+G′|2|>Ec

CE
d
2c
∑

G∈L∗
1
2 |k+G|2<Ec

|V̂G′−G|2|Φ̂G|2

= CE
d
2c
∑

G∈L∗
1
2 |k+G|2<Ec

|Φ̂G|2
∑

G′∈L∗
1
2 |k+G′|2>Ec

|V̂G′−G|2

= CE
d
2c
∑

G∈L∗
1
2 |k+G|2<Ec

|Φ̂G|2
∑

R∈L∗
1
2 |k+G+R|2>Ec

|V̂R|2, (4.7.7)

where the second step follows from the Cauchy-Schwarz inequality and the third step follows by bounding
the number of lattice points inside a d-dimensional ball of radius

√
2Ec centered at k ∈ Rd. Using now a

125



similar calculation to the one carried out to arrive at Inequality (4.7.6), we deduce that∑
R∈L∗

1
2 |k+G+R|2>Ec

|V̂R|2 6

(
1

2Ec

)r ∑
R∈L∗

1
2 |k+G+R|2>Ec

(
1 + |k + G + R|2

)r |V̂R|2

6

(
1

2Ec

)r ∑
R∈L∗

1
2 |k+G+R|2>Ec

(
1 + 2|k + R|2 + 2|G|2

)r |V̂R|2

6

(
C
Ec

)r ∑
R∈L∗

1
2 |k+G+R|2>Ec

(
1 + |k + R|2

)r |V̂R|2 +
(
1 + |G|2

)r |V̂R|2

6

(
C
Ec

)r (
‖V ‖2

Hr
per(Ω) +

(
1 + |G|2

)r ‖V ‖2
L2

per(Ω)

)
.

Plugging in this last expression in Inequality (4.7.7) easily allows us to deduce that

‖Π⊥
k,Ec

VΠk,EcΦ‖2
L2

per(Ω) 6

(
C
Ec

)r− d
2

‖V ‖2
Hr

per(Ω)‖Φ‖2
Hr+2

per (Ω). (4.7.8)

Finally, an identical calculation to the one used to obtain Inequality (4.7.6) can be used to simplify the
term (II) in Inequality (4.7.2). Combining now Estimates (4.7.6)-(4.7.8) with Inequalities (4.7.2)-(4.7.5),
we deduce that for all Ec > Ẽc and any k ∈ Ω∗ it holds that

ε̃4Ec
n,k − εn,k 6 max

Φ∈Yk
n

‖Πk,Ec Φ‖L2
per(Ω)=1

((
C
Ec

)r+1− d
4

‖V ‖Hr
per(Ω)‖Φ‖2

Hr+2
per (Ω)

−
(

C
Ec

)r+2
min{ε1(k), 0}‖Φ‖2

Hr+2
per (Ω)

)

+ max
Φ∈Yk

n

‖Πk,Ec Φ‖L2
per(Ω)=1

(
C
Ec

)r+2
εn(k)‖Φ‖2

Hr+2
per (Ω).

Collecting terms, we obtain an estimate of the form

ε̃4Ec
n,k − εn,k 6

(
C
Ec

)r+1− d
4

max
Φ∈Yk

n

‖Πk,Ec Φ‖L2
per(Ω)=1

‖Φ‖2
Hr+2

per (Ω).

To conclude, we notice that we may write

max
Φ∈Yk

n

‖Πk,Ec Φ‖L2
per(Ω)=1

‖Φ‖2
Hr+2

per (Ω) 6 max
Φ∈Yk

n

‖Φ‖L2
per(Ω)=1

‖Φ‖2
Hr+2

per (Ω) max
Φ∈Yk

n

‖Πk,Ec Φ‖L2
per(Ω)=1

‖Φ‖2
L2

per(Ω)

︸ ︷︷ ︸
:=(III)

,

and it is well-known that there exists an upper bound CM,Ec > 0 for the term (III), provided that the
basis BEc

k satisfies the so-called approximation property (which it does) and that Ec is larger than some
threshold Êc > 0. Defining appropriate constants and setting the discretization cutoff E∗

c large enough
thus completes the proof.

We can now turn our attention to the more technical proof of Theorem 4.5.2 which characterizes
precisely the regularity of the modified energy bands {ε̃Ec

n }n∈N∗ . As stated in Section 4.5, the proof of
Theorem 4.5.2 will require the use of Lemma 1 which we now prove.
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Proof of Lemma 1.
We begin by claiming that thanks to the assumptions on the matrix Cn, for every Υ > 0 there exists

a natural number N(Υ) ∈ N such that for all n > N(Υ) and any λ ∈ C such that |λ| < Υ, the inverse
matrix (Cn − λ)−1 exists. Indeed, this is simply a consequence of the fact that for any invertible matrix
E, all its eigenvalues are lower bounded in magnitude by ‖E−1‖−1

2 .
Consequently, for any Υ > 0 and any n > N(Υ), we can introduce the open disk

BΥ(0) := {z ∈ C : |z| < Υ}, and define the non-linear function gΥ,n : BΥ(0) → C given by

gΥ,n(λ) := det
(

An − λ− Bn (Cn − λ)−1 B̃n
)

∀λ ∈ BΥ(0).

Using a well-known determinant identity for block matrices we deduce that for all Υ > 0, all n > N(Υ)
and any λ ∈ BΥ(0) it holds that

det (Hn − λ) = det (Cn − λ) gΥ,n(λ). (4.7.9)

Equation (4.7.9) implies that for any Υ > 0 sufficiently large there exists a natural number N(Υ) ∈ N
such that for all n > N(Υ)

λ ∈ BΥ(0) is an eigenvalue of Hn ⇐⇒ gΥ,n(λ) = 0. (4.7.10)

We are now interested in studying the zeros of the function gΥ,n in the asymptotic regime n → ∞.
Our goal is to show that the sequence of functions {gΥ,n}n∈N satisfy the hypotheses of Hurwitz’s theorem
from complex analysis (see, e.g., [Con78, Chapter VII, Theorem 2.5]).

We begin by establishing that for any Υ > 0 and any n > N(Υ), the non-linear function gΥ,n is
holomorphic on the open disk BΥ(0). To do so, observe that for any Υ > 0, all n > N(Υ) and any
λ ∈ BΥ(0) we can define the matrix

Zn(λ) := An − λ− Bn (Cn − λ)−1 B̃n.

Recall that the natural number N(Υ) was chosen so that all eigenvalues of Cn are strictly larger in
magnitude than Υ and consequently, (Cn − λ)−1 exists for all n > N(Υ) and all λ ∈ BΥ(0) ⊂ C. In view
of the assumptions on the sub-matrices An,Bn, B̃n and Cn, it therefore follows that the matrix Zn(λ)
exists and is bounded for all n > N(Υ), and has a power series expansion in the disk BΥ(0) of the form

Zn(λ) = An − λ−
∞∑
q=0

Bnλq (Cn)−q−1 B̃n =
∞∑
q=0

λq Mq,n, (4.7.11)

where each Mq,n is a square matrix of dimension p = dim A.
Equation (4.7.11) implies that each entry of the matrix Zn(λ) is itself a holomorphic function of λ with

a power series expansion valid in BΥ(0). Moreover, since gΥ,n(λ) = det (Zn(λ)) for each λ ∈ BΥ(0), and
the determinant is a polynomial of the entries of the underlying matrix, we deduce that for any Υ > 0
and all n > N(Υ) the non-linear function gΥ,n is indeed holomorphic on BΥ(0) ⊂ C.

Next, we claim that on any compact set K ⊂ BΥ(0), the sequence of non-linear functions {gΥ,n}`∈N
converges uniformly to the characteristic polynomial of An, i.e.,

lim
n→∞

sup
λ∈K

|det (An − λ) − gΥ,n(λ)| = 0. (4.7.12)

To prove that Equation (4.7.12) indeed holds, we appeal to a known determinant inequality for differ-
ences of matrices (see [IR08, Theorem 2.12]): For any two matrices E,F ∈ Cp×p, it holds that

|det(E) − det(E + F )| 6 p‖F‖2 max {‖E‖2, ‖E + F‖2}p−1
. (4.7.13)

Applying Inequality (4.7.13) to our situation yields that for any Υ > 0, any compact set K ⊂ BΥ(0),
all λ ∈ K and all n > N(Υ) it holds that

|det (An − λ) − gΥ,n(λ)| 6 p
∥∥Bn (Cn − λ)−1 B̃n

∥∥
2 max

{
‖An − λ‖2 , ‖Zn(λ)‖2

}p−1
. (4.7.14)
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To simplify this last estimate, we first use the definition of the parametrized matrix Zn(λ) to deduce
that for all n > N(Υ) it holds that

max
{

‖An − λ‖2 , ‖Zn(λ)‖2

}p−1
6
(

‖An − λ‖2 + ‖Bn (Cn − λ)−1 B̃n‖2

)p−1

6 2p−2
(

‖An − λ‖p−1
2 + ‖Bn (Cn − λ)−1 B̃n‖p−1

2

)
.

Additionally, recalling the assumptions on the sub-matrix Cn, we see that for all n > N(Υ) we have
that

‖Bn (Cn − λ)−1 B̃n‖2 6 ‖Bn‖2 ‖C−1
n ‖2 ‖

(
I − λC−1

n

)−1 ‖2 ‖B̃n
∥∥

2

Using now the estimates derived above together with Inequality (4.7.14) and recalling the boundedness
assumptions on the sub-matrices Bn, B̃n as well as the convergence result for the sub-matrices An,Cn, we
deduce that for any Υ > 0 and any compact set K ⊂ BΥ(0), there exists a constant ΛΥ,K (which depends
also on p) such that for all n > N(Υ) and all λ ∈ K it holds that

|det (An − λ) − gΥ,n(λ)| 6 ΛΥ,K ‖C−1
n ‖2,

from which Equation (4.7.12) now readily follows. Let us also emphasize here that since limn→∞ An = A,
we have in fact shown that the sequence of non-linear functions {gΥ,`}`∈N converges uniformly to the
characteristic polynomial of A on any compact set K ⊂ BΥ(0).

In order to complete our analysis, we observe that the characteristic polynomial of A is an entire
function which is not identically zero on any open subset of C. As a consequence, Hurwitz’s theorem
can be applied: For any Υ > 0 and any non-empty open, connected set U such that U ⊂ BΥ(0) and
det(A − λ) 6= 0 ∀λ ∈ ∂U , there exists N(Υ) ∈ N such that for all n > N(Υ), the non-linear function gΥ,n
and the characteristic polynomial det(A−•) of the matrix A have the same number of zeros in U counting
multiplicity. In particular,

(i) for all Υ > 0 sufficiently large, there exists Ñ(Υ) ∈ N such that for all n > Ñ(Υ) the non-linear
function gΥ,n has exactly p = dim A zeros counting multiplicity with magnitude strictly smaller
than Υ;

(ii) picking a fixed Υ large enough so that BΥ(0) contains all roots of the characteristic polynomial of
A, for every ρ > 0 sufficiently small, there exists N(ρ) ∈ N such that for any eigenvalue λA of the
matrix A with algebraic multiplicity Q ∈ N∗, and all n > N(ρ), the non-linear function gΥ,n has
exactly Q zeros (counting multiplicity) in the open disk Bρ

(
λA) ⊂ C.

The proof now follows easily by making use of Relation (4.7.10).

Proof of Theorem 4.5.2.
For clarity of exposition, we will divide this proof into three portions: We will first consider the

regularity of the approximate energy bands away from crossings and away from changes in the cardinality
of the k-dependent basis sets. This will allows us to deduce, as a corollary, the regularity of the approximate
energy bands at crossings but under the assumption that the cardinality of the k-dependent basis set does
not change. Lastly, we will consider the regularity of the approximate energy bands in the neighborhood
of points where the cardinality of the k-dependent basis sets may change.

For the remainder of this proof we recall the setting of the k-dependent modified Galerkin discretization
(4.4.3), we select Ec > 0 such that M−

Ec
> 0, and we pick some index n ∈ {1, . . . ,M−

Ec
} and some point

k0 ∈ Rd.

Case one: we assume that k0 ∈ Rd satisfies

For all G ∈ L∗ it holds that |k0 + G|2 6= 2Ec and

ε̃Ec
n (k0) 6= ε̃Ec

ñ
(k0) ∀ñ ∈ {1, . . . ,M−

Ec
} with ñ 6= n.
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In other words, we assume that there is no change in the cardinality of the basis set at k0 and that there
are no band crossings at

(
k0, ε̃

Ec
n (k0)

)
.

We claim that in this case, the approximate energy band ε̃Ec
n is of class Cm in a neighborhood of k0, i.e.,

ε̃Ec
n has the same local regularity at k0 as the blow-up function G does on the interval (0, 1) ⊂ R. Indeed,

this is a straightforward application of the implicit function theorem: We notice that the dimensions of
the modified-Hamiltonian matrices H̃G ,Ec

k do not change in a sufficiently small neighborhood of k0 and the
dependence of this matrix on k in such a neighborhood is of class Cm (thanks to the regularity properties
of G ). Since, additionally, the eigenvalue ε̃Ec

n (k0) is simple, it can be shown that the assumptions of the
implicit function theorem hold, and therefore by a classical argument (see, e.g.,[Ser10, Theorem 5.3]) it
follows that the approximate energy band ε̃Ec

n is indeed of class Cm in a neighborhood of k0 as claimed.
Let us remark here that a similar argument involving the implicit function theorem yields Cm reg-

ularity, as a function of k ∈ Rd, of the (normalized) eigenfunction ũEc
n,k associated with the eigenvalue

ε̃Ec
n,k at k = k0. A detailed argument can, for instance, be found in [Lax07, Chapter 9, Theorem 8]. This

additional fact will of use in the sequel.

Case two: we assume that k0 ∈ Rd satisfies

For all G ∈ L∗ it holds that |k0 + G|2 6= 2Ec and

∃ ñ ∈ {1, . . . ,M−
Ec

} with ñ 6= n : ε̃Ec
n (k0) = ε̃Ec

ñ
(k0).

In other words, we assume that there is no change in the cardinality of the basis set at k0 but there is a
band crossing at

(
k0, ε̃

Ec
n (k0)

)
.

We claim that in this case, the approximate energy band ε̃Ec
n is either Lipschitz continuous in a

neighborhood of k0 if m > 1 or of class C 0 otherwise. To this end, we notice that the dimensions of the
matrix H̃G ,Ec

k do not change in a sufficiently small neighborhood of k0 and the dependence of this matrix
on k in such a neighborhood is of class Cm, m > 0 thanks to the regularity properties of G . If m = 0,
then it follows from a classical argument (see [Whi72, Appendix V, Page 363]) that all approximate energy
bands {ε̃Ec

n }
M−

Ec
n=1 are continuous at k0. If, on the other hand, m > 1, then the claimed Lipschitz continuity

follows from the min-max theorem. Indeed, for any k ∈ Rd let Ỹk,Ec
n be the span of the first n eigenvectors

of the modified Hamiltonian matrix H̃G ,Ec
k , let δ > 0 be a sufficiently small constant such that the basis

set BEc
k remains unchanged for all k in the open ball Bδ(k0) ⊂ Rd, and let k1,k2 ∈ Bδ(k0). It then follows

from the min-max theorem that

ε̃Ec
n (k1) − ε̃Ec

n (k2) 6 max
Φ∈Ỹk2,Ec

n

‖Φ‖L2
per(Ω)=1

(
Φ, H̃G ,Ec

k1
Φ
)
L2

per(Ω)
− max

Φ∈Ỹk2,Ec
n

‖Φ‖L2
per(Ω)=1

(
Φ, H̃G ,Ec

k2
Φ
)
L2

per(Ω)

6 max
Φ∈Ỹk2,Ec

n

‖Φ‖L2
per(Ω)=1

∣∣∣∣(Φ, (H̃G ,Ec
k1

− H̃G ,Ec
k2

)Φ
)
L2

per(Ω)

∣∣∣∣
≤ max

Φ∈Ỹk2,Ec
n

‖Φ‖L2
per(Ω)=1

∑
G∈B

Ec
k0

|Φ̂G|2Ec

∣∣∣∣G ( |G + k1|√
2Ec

)
− G

(
|G + k2|√

2Ec

)∣∣∣∣
≤ max

G∈B
Ec
k0

Ec

∣∣∣∣G ( |G + k1|√
2Ec

)
− G

(
|G + k2|√

2Ec

)∣∣∣∣ max
Φ∈Ỹk2,Ec

n

‖Φ‖L2
per(Ω)=1

‖Φ‖2
L2

per(Ω).

Here, the third inequality follows directly from Definition (4.4.2) of the modified Hamiltonian matrices
together with the fact that BEc

k0
= BEc

k1
= BEc

k2
, i.e., the k-dependent basis sets in the open ball Bδ(k0) are

identical.
Using now the fact that G is of class C 1 and thus locally Lipschitz continuous on the open interval

(−1, 1) while |G+k̃|√
2Ec

< 1 for any k̃ ∈ Bδ(k0) and all G ∈ BEc
k0

, we deduce the existence of a constant CG
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such that that

ε̃Ec
n (k1) − ε̃Ec

n (k2) 6
√

Ec

2 CG max
G∈B

Ec
k0

∣∣∣|G + k1| − |G + k2|
∣∣∣ 6√Ec

2 CG |k1 − k2|,

where the last inequality is a consequence of the reverse triangle inequality. The Lipschitz continuity of
the approximate energy bands now readily follows.

Case three: we assume that k0 ∈ Rd satisfies

There exists G ∈ L∗ such that |k0 + G|2 = 2Ec.

In other words, we assume that there is a change in the cardinality of the basis set at k0.

We claim that in this case, there are two possibilities: if there is no band crossing at (k0, ε̃
Ec
n (k0)),

then the approximate energy band ε̃Ec
n is of class Cm in a neighborhood of k0, i.e., ε̃Ec

n has the same local
regularity at k0 as the rate of blow-up of the function G (x) in the limit x → 1. If, on the other hand,
there is a band crossing at (k0, ε̃n(k0)), then the approximate energy band ε̃Ec

n is Lipschitz continuous at
k0 if m > 1 and of class C 0 otherwise.

We begin by defining the non-empty sets

SE−
c

k0
:=
{

G ∈ L∗ : 1
2 |k0 + G|2 < Ec

}
and

SEc
k0

:=
{

G ∈ L∗ : 1
2 |k0 + G|2 = Ec

}
with M := dim SEc

k0
< ∞.

Clearly there exists δ > 0 sufficiently small such that ∀ k ∈ Rd with |k − k0| < δ, the k-dependent
basis sets satisfy {

eG : G ∈ SE−
c

k0

}
⊆ BEc

k ⊆
{
eG : G ∈ SE−

c
k0

∪ SEc
k0

}
.

Let us therefore fix some δ 6 δ and consider the open ball Bδ(k0) of radius δ centered at k0. We will
study the behavior of sequences of k-points in this open ball that converge to k0.

To do so, we consider a specific decomposition of the open ball Bδ(k0) into sectors {Ωj}Mj=1 defined as
follows: First, for every G̃ ∈ SEc

k0
we define the open set

SG̃ =
{

k ∈ Bδ(k0) : 1
2 |k + G̃|2 < Ec

}
. (4.7.15)

It is now easy to see that there are exactly two cases:

1. For all k ∈ SG̃, the Fourier mode eG̃ is an element of the k-dependent basis set BEc
k .

2. For all k ∈ Bδ(k0) \ SG̃, the Fourier mode eG̃ is not an element of the k-dependent basis set BEc
k .

Next, we label the elements of SEc
k0

as G1,G2, . . . ,GM . It follows that there exist sets
Ωj , j ∈ {1, . . . , 2M} ⊂ Bδ(k0) such that Bδ(k0) = ∪2M

j=1Ωj with

Ω1 := Bδ(k0) \
( ⋃

G∈SEc
k0

SG

)
and

∀j ∈ {2, . . . , 2M}, ∃ L 6M, J := {j1, j2, . . . , jL} ⊂ {1, . . . ,M} such that

Ωj =
(⋂
`∈J

SG`

)
\

 ⋃
`∈{1,...,M}\J

SG`

 .

(4.7.16)

A visual example of the above decomposition is displayed in Figure 4.14. Note that we allow for the
possibility of some Ωj , j ∈ {1, . . . , 2M} to be empty. Two observations should now be made.
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Figure 4.14 – An example of Decomposition (4.7.16) introduced above for a hexagonal lattice. For clarity,
we show only the decomposition corresponding to three elements of SEc

k0
.

Observation one: the set Ω1 has the following property: For all k ∈ Ω1 it holds that BEc
k = BEc

k0
.

Observation two: each set Ωj , j > 1 has the following property: For all k ∈ Ωj it holds that

BEc
k = BEc

k0
∪ {eGj1

, eGj2
, . . . , eGjL

}.

Let us now fix some j ∈ {1, . . . , 2M} and consider the set Ωj . Our goal is to study the convergence
of the approximate, modified energy band ε̃Ec

n (·) (and its derivatives) along sequences {k`}`∈N∗ contained
in Ωj that converge to k0. The reason we have introduced the decomposition {Ωj}2M

j=1 and we restrict
ourselves, as a first step, to sequences contained in a fixed Ωj is because for each fixed Ωj and all k ∈ Ωj ,
we have precise knowledge of the k-dependent basis set thanks to Observation two.

Obviously, if Ωj is an empty set, then there is nothing to study so we assume without loss of generality
that Ωj is non-empty. Additionally, thanks to Observation one above, the choice Ωj = Ω1 is already
covered by the proof of Case one of our proof so we may assume that j > 1. It now follows from
Observation two that for all k ∈ Ωj , we have the decomposition

BEc
k = BEc

k0
∪ B̃Ωj

Ec and BEc
k0

∩ B̃Ωj

Ec = ∅, where (4.7.17)

B̃Ωj

Ec := {eG : G ∈ {Gj1 ,Gj2 , . . . ,GjL
}} and X̃Ec

k0,Ωj
:= span B̃Ωj

Ec
. (4.7.18)

Let us remark here that in Equation (4.7.17), the fact that the set intersection is empty follows from the
fact that if the Fourier mode eGk

∈ B̃Ωj

Ec , then Gk ∈ SEc
k0

so that eGk
/∈ BEc

k0
by Definition 4.3.2.

From Equations (4.7.17) and (4.7.18) we can now deduce that ∀k ∈ Ωj it holds that

XEc
k :=span BEc

k = span BEc
k0

⊕ span B̃Ωj

Ec = XEc
k0

⊕ X̃Ec
k0,Ωj

.

We denote by Π̃Ωj ,Ec : L2
per(Ω) → L2

per(Ω) the L2
per-orthogonal projection operator onto X̃Ec

k0,Ωj
. It

follows that for all k ∈ Ωj , the modified Hamiltonian matrix H̃G ,Ec
k admits the following block represen-

tation:
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H̃G ,Ec
k =



Πk0,Ec

(
H̃G ,Ec

k

)
Πk0,Ec Πk0,Ec

(
H̃G ,Ec

k

)
Π̃Ωj ,Ec

Π̃Ωj ,Ec

(
H̃G ,Ec

k

)
Πk0,Ec Π̃Ωj ,Ec

(
H̃G ,Ec

k

)
Π̃Ωj ,Ec


=

 Ak Bk

B∗
k Ck

 . (4.7.19)

We will now consider the convergence properties of each of the sub-matrices appearing in Equation (4.7.19).

Convergence properties of sub-matrix Ak.
For the sub-matrix Ak, using Equation (4.4.2) we have that for all k ∈ Ωj and any Φ ∈ XEc

k0
it holds

that

AkΦ = Πk0,Ec

(
H̃G ,Ec

k

)
Φ = Πk0,Ec

∑
G∈L∗

|k0+G|2<2Ec

Φ̂G

(
EcG

(
|G + k|√

2Ec

)
+ V

)
eG. (4.7.20)

Since the blow-up function G is continuous on the interval (0, 1), we see immediately that for any sequence
{k`}`∈N∗ ⊂ Ωj such that lim`→∞ k` = k0 it holds that

lim
`→∞

∥∥∥Ak`
Φ − H̃G ,Ec

k0
Φ
∥∥∥
L2

per(Ω)
= 0 and thus lim

`→∞

∥∥∥Ak`
− H̃G ,Ec

k0

∥∥∥
2

= 0 (4.7.21)

Additionally, if the blow-up function G is of class Cm on (0, 1) for m > 0, then Equation (4.7.20) also
allows us to deduce that the sub-matrix Ak, k ∈ Rd is continuously differentiable up to order m at k = k0.

Convergence properties of sub-matrices Bk and B∗
k.

Notice that the blow-up function G does not appear in the off-diagonal blocks B and B∗ and that the
effective potential V is independent of k and k0. Consequently, a similar argument as the one used for
the sub-matrix Ak yields that for any sequence {k`}`∈N∗ ⊂ Ωj such that lim`→∞ k` = k0 we have

lim
`→∞

‖Bk`
− Bk0‖2 = 0 and lim

`→∞

∥∥B∗
k`

− B∗
k0

∥∥
2 = 0. (4.7.22)

where Bk0 ,B
∗
k0

are fixed, rectangular matrices that are independent of the specific choice of sequence {k`},
although they depend of course on the chosen sector Ωj .

Convergence properties of sub-matrix Ck.
We use once again Equation (4.4.2) to deduce that for all k ∈ Ωj and any Φ ∈ X̃Ec

k0,Ωj
it holds that

CkΦ = Π̃Ωj ,Ec

(
H̃G ,Ec

k

)
Φ = Π̃Ωj ,Ec

∑
G∈{Gj1 ,...,Gj`

}⊂L∗̂

ΦG

(
EcG

(
|G + k|√

2Ec

)
+ V

)
eG. (4.7.23)

Consider now a sequence {k`}j∈N∗ ⊂ Ωj such that lim`→∞ k` = k0. Recalling that

{Gj1 , . . . ,Gj`
} ⊂ SEc

k0
and the corresponding Fourier modes eGj1

, . . . , eGj`
are elements of B̃Ωj

Ec , and
using Equation (4.7.15) we see that

|Gjk
+ k`| 6

√
2Ec for all ` ∈ N∗, j1, . . . , j` and

lim
`→∞

|Gjk
+ k`| =

√
2Ec for all j1, . . . , j`.

Since, on the one hand the blow-up function G (x) has a singularity at x = 1, and on the other hand the
effective potential V is independent of {k`}`∈N∗ ⊂ Ωj we infer that for all ` ∈ N∗, we can write the matrix
Ck`

in the form

Ck`
= Dk`

+ Nk0 , (4.7.24)
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where Dk`
and Nk0 are both square matrices of dimension dimX̃Ec

k0,Ωj
, and the matrix Dk`

is diagonal
with entries that all diverge to +∞ in the limit ` → ∞ while the entries of Nk0 are independent of `. A
particular consequence of this is that the matrix Dk`

is invertible for ` sufficiently large.
We now claim that for all p ∈ {0, . . . ,m} it holds that

lim
`→∞

∥∥D−1
k`

∥∥
2

|k0 − k`|p
= 0.

To see this, we recall Equation (4.7.23) and the fact that Dk`
is diagonal so that it suffices to show that

∀Gjk
∈ {Gj1 , . . . ,Gj`

} and any p ∈ {0, . . . ,m} it holds that

lim
`→∞

1
|k0 − k`|p

· 1
G
(

|Gjk
+k`|√

2Ec

) = 0 or equivalently

lim
`→∞

|k0 − k`|p · G

(
|Gjk

+ k`|√
2Ec

)
= +∞.

Using simple algebra, one can show that for all Gjk
∈ {Gj1 , . . . ,Gj`

} and any p ∈ {0, . . . ,m} we have

lim
`→∞

|k0 − k`|p · G

(
|Gjk

+ k`|√
2Ec

)
= +∞ ⇐⇒ lim

x→1−
(1 − x)j · G (x) = +∞.

But this latter condition is satisfied by the blow-up function G by assumption (see Definition 4.4.1). We
therefore conclude that for all p ∈ {0, . . . ,m} it holds that

lim
`→∞

D−1
k`

|k0 − k`|p
= 0 = lim

`→∞

C−1
k`

|k0 − k`|p
in the matrix 2-norm topology. (4.7.25)

Consider again a sequence {k`}`∈N∗ ⊂ Ωj such that lim`→∞ k` = k0. Having understood the con-
vergence properties of the sub-blocks of the modified Hamiltonian matrix H̃G ,Ec

k , we will now study the
convergence of the approximate energy band ε̃Ec

n and its derivatives up to order m as functions of the
sequence {k`}`∈N∗ .

Continuity of energy bands.
Recall that MEc(k) denotes the dimension of the matrix H̃G ,Ec

k at k ∈ Rd. Thanks to the defi-
nition of the set Ωj , we see that for each element of the sequence {k`}`∈N∗ , the dimension of H̃G ,Ec

k`

remains constant, i.e.,MEc(k`) = M ∈ N∗. Consequently, we may apply Lemma 1 to the modified
Hamiltonian matrices

{
H̃G ,Ec

k`

}
`∈N∗

. Indeed, thanks to the convergence properties of the sub-matrices
{Ak`

}`∈N∗ , {Bk`
}`∈N∗ , {B∗

k`
}`∈N∗ and {Ck`

}`∈N∗ established above (and taking a subsequence, if neces-
sary, to ensure the invertibility of all Ck`

), we see that the assumptions of Lemma 1 are satisfied. Denoting
therefore, p = dim Ak0 and recalling that H̃G ,Ec

k0
= Ak0 , we deduce that for each q ∈ {1, . . . , p} it holds

that

lim
`→∞

ε̃Ec
q (k`) = ε̃Ec

q (k0) and (4.7.26)

lim
`→∞

ε̃Ec
p+1(k`) = lim

`→∞
ε̃Ec
p+2(k`) = · · · = lim

`→∞
ε̃Ec
M (k`) = ∞.

In order to conclude the continuity of the bounded energy bands {ε̃Ec
q }q∈{1,...,p}, it suffices to recall

that we have considered a sequence {k`}`∈N∗ ⊂ Ωj for some j ∈ {2, . . . , 2M}. But since Ωj was chosen
arbitrarily and there are only a finite number of possible choices for Ωj , we conclude that Equation (4.7.26)
holds for any sequence {k`}`∈N∗ ⊂ Bδ(k). It follows that all bounded, modified energy bands {ε̃Ec

q }pq=1
are continuous at k = k0 as claimed. Noting that p = dim Ak0 6M−

Ec
completes the proof of continuity.

If the blow-up function G satisfies Properties (1)-(4) from Definition 4.4.1 only for m = 0, then we are
done. Hence, we may assume that m > 1 and that all eigenvalues of Ak0 = H̃G ,Ec

k0
are simple.

We study next the regularity of the derivatives of the bounded, modified energy bands.
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First order differentiability of energy bands.
We begin by studying the convergence of the eigenvectors associated with the bounded energy bands

ε̃Ec
q (k`), q ∈ {1, . . . , p}. The primary tool we will use for this study will be the Schur complement

associated with the block decomposition (4.7.19) of the modified Hamiltonian matrix H̃G ,Ec
k`

.
Let q ∈ {1, . . . , p} be the index of a bounded energy band. A straightforward calculation using the

block decomposition (4.7.19) shows that for any k` ∈ Ωj it holds that

Πk0,Ec

(
ε̃Ec
q (k`) ũEc

q,k`

)
= Ak`

ũEc
q,k`

− Bk`

(
Ck`

− ε̃Ec
q (k`)

)−1
B∗

k`
ũEc
q,k`

, (4.7.27)

where ũEc
q,k`

denotes the qth normalized eigenfunction of the modified Hamiltonian matrix H̃G ,Ec
k`

. Addi-
tionally, thanks to Equations (4.7.22) and (4.7.25), we deduce from Equation (4.7.27) that

lim
`→∞

(
Πk0,Ec

(
ε̃Ec
q (k`)ũEc

q,k`

)
− Ak`

ũEc
q,k`

)
= 0. (4.7.28)

Next, observe that since the sequence
{

Πk0,Ec ũ
Ec
q,k`

}
`∈N∗

is bounded, it possesses a convergent subse-

quence, which we also write as
{

Πk0,Ec ũ
Ec
q,k`

}
`∈N∗

. We can then deduce from Equations (4.7.21), (4.7.26),
and (4.7.28) that
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(
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`→∞
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)
= Ak0

(
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)
.

But this implies that either lim
`→∞

Πk0,Ec ũ
Ec
q,k`

is (up to normalization) the eigenvector ũEc
q,k0

associated with

the eigenvalue ε̃Ec
q (k0) or lim

`→∞
Πk0,Ec ũ

Ec
q,k`

= 0. Suppose on the contrary that lim
`→∞

Πk0,Ec ũ
Ec
q,k`

= 0 and
note that the block decomposition (4.7.19) implies that for all k` ∈ Ωj we have

Π⊥
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(
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)
= B∗

k`
ũEc
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+ Ck`
ũEc
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. (4.7.29)

We can now take the limit ` → ∞ on both sides of Equation (4.7.29). But lim
`→∞

ε̃Ec
q (k`) = ε̃Ec

q (k0) < ∞

and lim
`→∞

‖Π⊥
k0,Ec

ũEc
q,k`

‖ = 1 while all eigenvalues of the matrix Ck`
diverge to +∞ in the limit ` → ∞.

Consequently, we must have

lim
`→∞

Πk0,Ec ũ
Ec
q,k`

= lim
`→∞

ũEc
q,k`

= ũEc
q,k0

. (4.7.30)

Moreover, similar to the argument for sequential continuity of the approximate, modified energy bands,
we conclude from the fact that {k`}`∈N∗ ⊂ Ωj and only a finite number of possibilities exist for the choice
of j ∈ {2, . . . , 2M}, that Equation (4.7.30) also holds for any sequence {k`}`∈N∗ ⊂ Bδ(k), which proves
sequential continuity of the normalized eigenfunctions associated with all bounded energy bands.

Equipped with the convergence properties of the eigenvectors associated with the bounded energy
bands, we can now consider the first order derivatives of the bounded, modified energy band ε̃Ec

q (k),
q ∈ {1, . . . , p} at k = k0. Thanks once again to Equations (4.7.22) and (4.7.25), we deduce from the
Schur-type decomposition (4.7.27) that

lim
`→∞

(
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(
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q,k`

)
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)
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= 0.

Adding and subtracting the term ε̃Ec
q (k0) Πk0,Ec ũ

Ec
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, using the fact that ε̃Ec
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= Ak0 ũ
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, and
taking the inner product with the eigenfunction ũEc
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then yields

lim
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)
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|k` − k0|
= 0. (4.7.31)
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Next, recall that Ak is m-times continuously differentiable at k = k0 and denote by dAk0 : Rd → Rp×p

the total derivative of Ak at k = k0. Adding and subtracting the term dAk0 [k` − k0], i.e., dAk0 acting
on the vector k` − k0, we can deduce from Equation (4.7.31) that

lim
`→∞

((
ε̃Ec
q (k`) − ε̃Ec

q (k0) − dAk0 [k` − k0]
)
ũEc
q,k0

,Πk0,Ec ũ
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)
L2
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|k` − k0|
= 0. (4.7.32)

Adding and subtracting the term
(

dAk0 [k` − k0]ũEc
q,k0

, ũEc
q,k0

)
L2

per(Ω)
and using simple algebra, it can be

deduced that

lim
`→∞

(
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−
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, ũEc
q,k0

)
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per(Ω)

|k` − k0|
= 0. (4.7.33)

Similar to the argument for sequential continuity of the approximate, modified energy bands, we
conclude from the fact that {k`}`∈N∗ ⊂ Ωj and only a finite number of possibilities exist for the choice of
j ∈ {2, . . . , 2M}, that Equation (4.7.33) also holds for any sequence {k`}`∈N∗ ⊂ Bδ(k). Thus, the total
derivative of the approximate, modified energy bands exists at k0 and is given by

dε̃Ec
q (k0) =

(
dAk0 ũ

Ec
q,k0

, ũEc
q,k0

)
L2

per(Ω)
. (4.7.34)

As a consequence, ε̃Ec
q is of class C 1 at k0 as claimed. Noting that we picked an arbitrary q ∈ {1 . . . , p}

where p = dim Ak0 6M−
Ec

completes the proof of differentiability of order one.
If the blow-up function G satisfies Properties (1)-(4) from Definition 4.4.1 only for m 6 1, then we are

done. Hence, we may assume that m > 2.

Higher order differentiability of energy bands.
Imitating the procedure carried out for the case m = 1, we will first make use of order one differentia-

bility of the energy band ε̃Ec
q,k0

, q ∈ {1, . . . , p}, to establish order one differentiability of the corresponding
eigenfunction ũEc

q,k0
.

Let q ∈ {1, . . . , p} be the index of a bounded energy band. As a first remark, let us recall that by
construction, the approximation space XEc

k is identical for all k ∈ Ωj . Since the sequence {k`}`∈N∗ ⊂ Ωj ,
it can readily be deduced from the definition of the modified Hamiltonian matrix H̃G ,Ec

k given by Equation
(4.4.2) and the regularity properties of the blow-up function G that the modified Hamiltonian matrix H̃G ,Ec

k
is m-times continuously differentiable at any k = k`. Moreover, we have assumed that all eigenvalues of
Ak0 = H̃G ,Ec

k0
are simple. Therefore, as discussed in Case one of the current proof, the implicit function

theorem can be used to prove that for ` sufficiently large, the energy band ε̃Ec
q (k) and the associated

(normalized) eigenfunction ũEc
q,k are m-times continuously differentiable (as a function of k ∈ Rd) at any

k = k`. Without loss of generality, we may assume that this is the case for all ` ∈ N∗.
Next, let us recall the Schur-type decomposition (4.7.27) which offers an expression for the eigenvalue

ε̃Ec
q (k) in terms of the block decomposition and Schur complement of the modified Hamiltonian matrix

H̃G ,Ec
k . Taking partial derivatives with respect to the ith component of k = (k1, . . . ,kd) ∈ Rd of this

equation yields that for any ` ∈ N∗ it holds that(
Ak`

− ε̃Ec
q (k`) − Bk`

(
Ck`

− ε̃Ec
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)−1
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(
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q (k`) (4.7.35)

+Bk`

(
Ck`

− ε̃Ec
q (k`)

)−1 (
∂iCk`

− ∂iε̃
Ec
q (k`)

) (
Ck`

− ε̃Ec
q (k`)

)−1
B∗

k`

)
Πk0,Ec ũ

Ec
q,k`

,

where we have used the fact that the sub-matrices Bk and B∗
k do not change for different choices of

k ∈ Ωj while the sub-matrices Ak and Ck are m-times continuously differentiable by construction for all
k = k` ∈ Ωj .
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Let now
(
λAk0

, vk0

)
=
(
ε̃Ec
q (k0), ũEc

q,k0

)
denote the unique, normalized eigenpair of the matrix

Ak0 ∈ Rp×p such that lim
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and lim
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Ec
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= vk0 . Thanks to the regularity proper-
ties of the sub-matrix Ak0 , we can once again deduce that both λAk , and vk are m-times continuously
differentiable at k = k0. Our goal now is to use Equation (4.7.35) to demonstrate that lim

`→∞
∂iũ

Ec
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= ∂ivk0 .
To this end, we claim that in fact
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Indeed, Equation (4.7.36) is a consequence of the properties of the blow-up function G : R → R given by
Definition 4.4.1 as can easily be verified using a similar calculation as the one used to arrive at Equation
(4.7.25).

Taking limits on both sides of Equation (4.7.35) and using the convergence properties we have proven
thus far, we obtain that
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(4.7.37)

A direct calculation now yields that the right hand side of the above equation is L2
per-orthogonal to

span{ũEc
q,k0

}. Moreover, thanks to the convergence properties of the sub-matrices Ak`
,Bk`

,B∗
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and Ck`
,

we also deduce that for ` sufficiently large it holds that(
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Consequently, Equation (4.7.37) yields that
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ũEc
q,k0

, (4.7.38)

where Π⊥
ũEc

q (k0)
is the L2

per-orthogonal projection operator onto {ũEc
q,k0

}⊥ ⊂ XEc
k0

.
To proceed to the conclusion, we need to demonstrate that(
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We first focus on the latter limit. To this end, we recall Equation (4.7.29), which yields that for all ` ∈ N∗

it holds that
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ũEc
q,k`

+ Ck`
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We have already demonstrated that lim
`→∞

Π⊥
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= 0. Recalling therefore the decomposition
Ck`

= Dk`
+ Nk0 introduced priori to Equation (4.7.25), we see that we must have
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Taking now partial derivatives with respect to the ith component of k = (k1, . . . ,kd) ∈ Rd of Equation
(4.7.39), taking limits, and simplifying terms that obviously goes to zero now, we obtain that
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where the last equality follows again from the properties of the blow-up function G : R → R defined
through Definition 4.4.1. We conclude that lim`→∞ ∂iΠ⊥

k0,Ec
ũEc
q,k`

= 0 as claimed.
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It remains to prove that
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q,k`

, for all ` ∈ N∗ it holds that(
Πk0,Ec ũ
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Collecting these convergence results and recalling Equation (4.7.38), we see that we have in fact shown
that
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ũEc

q (k0)

(
Ak0 − ε̃Ec

q (k0)
)

Π⊥
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Similar to the argument for sequential continuity of the approximate, modified energy bands, we
conclude from the fact that {k`}`∈N∗ ⊂ Ωj and only a finite number of possibilities exist for the choice
of j ∈ {2, . . . , 2M}, that Equation (4.7.41) also holds for any sequence {k`}`∈N∗ ⊂ Bδ(k). It is now
straightforward to conclude from Equation (4.7.41) that lim

`→∞
∂iũ

Ec
q,k`

= ∂ivk0 as claimed since ∂ivk0 by
definition also satisfies the equation(

Ak0 − ε̃Ec
q (k0)

)
∂ivk0 = −

(
∂iAk0 − ∂iε̃

Ec
q (k0)

)
ũEc
q,k0

.

As a consequence, ũEc
q,k is of class C 1 at k = k0 as claimed. Noting that we picked an arbitrary q ∈ {1 . . . , p}

where p = dim Ak0 6 M−
Ec

completes the proof of differentiability of order one of the bounded energy
band eigenfunctions.

By making use of this first order differentiability, we can perform a similar demonstration involving
limits of finite-difference approximations of second order derivatives in order to establish C 2 regularity of
the modified energy band ε̃Ec

q at k0. For the sake of brevity, we omit the details of these (and higher order
differentiability) demonstrations.

4.8 Perspectives
In the preceding section, our results were presented for a low cut-off energy Ec = 5 Ha. It is a priori
not clear from these results that our method offers advantages for practical applications with a higher Ec.
Indeed, if we compute the total energy of FCC crystalline silicon as a function of the lattice parameter
for Ec = 80 Ha rather than with Ec = 5 Ha, as in Figure 4.12, the standard calculation gives a smooth
curve for the eye-norm. Actually, more accurate numerical investigation shows that the first derivative of
the total energy seems continuous and mostly agrees with the one obtained with the modified operator
method, but that the second derivative is discontinuous. This is illustrated in Figure 4.15, where the
first (left plot) and second (right plot) derivatives computed by finite differences are plotted for lattice
parameters in a narrow range around equilibrium lattice constant a0 = 10.26 bohr and energy cutoff
Ec = 80 Ha.

These preliminary results point toward possible applications of our method. In a subsequent study,
we will investigate the effect of the modified Galerkin method on the computation of integrals over the
Brillouin zone.
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Figure 4.15 – First and second derivatives of the energy per unit volume of FCC silicon as a function
of the lattice parameter a for the unmodified and modified Galerkin discretizations for different value of
blow-up parameters and for a high cut-off energy Ec = 80 Ha. Derivatives are computed using a two-point
centered finite difference approximation with step size ∆a = 10−4 bohr. The second derivative obtained
with the standard discretization is discontinuous.
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Chapter 5

Contributions to the Julia electronic
structure eco-system: models for

Twitsted-Bilayer Graphene

The work described in Section 5.3 has been done in collaboration with Étienne Polack. We are thankful
to Éric Cancès, Michael Herbst, Antoine Levitt and Louis Garrigue for useful discussions.

Abstract This chapter describes two numerical contribution related to the simulation of multilayer
2D materials in Julia language [Bez+17], with an emphasis on twisted-bilayer graphene. The first con-
tribution is a package, built as an overlay to the DFTK [HLC21] code, that implements the effective
models for twisted-bilayer graphene presented in [CGG23]. The second is an application of [Bak+18] in
the computation of tight-binding matrix elements for twisted-bilayer graphene.
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5.1 Introduction
In this chapter, we describe two numerical contributions in Julia language [Bez+17] for the simulation of
Twisted-Bilayer Graphene (TBG). Note that these contributions could also be used for the simultation
of other multilayer 2D materials. This moiré material is made of two layers of atomically thin graphene
sheets, stacked on each other with relative twist angle θ. Among all moiré materials, TBG stands out by
its simplicity (it is only made of carbon atoms) and experimental accessibility (starting from the seminal
“scotch-tape” exfoliation and isolation of graphene in 2004 [Net+09]). In addition, this material showcased
exotic quantum phenomena including correlated insulating states and unconventional superconductivity
[Cao+18] for some small twist angles, now referred to as magic angles. The understanding of Magic Angle
Twisted Bilayer Graphene (MATBG) at experimental and theoretical level holds great promises toward
the understanding of strong electronic correlation.

Figure 5.1 – A sample of twisted-bilayer graphene (TBG). The twist angle between the two graphene
layers (respectively black and blue on the picture) creates a characteristic moiré pattern. Source: adapted
from Wikipedia Commons. The corresponding moiré lattice seems periodic at mesoscopic scale.

When it comes to theory, moiré materials introduce new challenges. While the theoretical and com-
putational study of solid materials is generally simplified by the use of translational symmetry and Bloch
theory, moiré materials such as TBG are generally non-periodic. One way around this problem is to see
that, at mesoscopic scale, TBG looks almost like a periodic crystal, with the associated lattice known as
the moiré lattice. The smaller the angle, the more atoms in the moiré cell, with the typical MATBG cell
containing of the order of 11,000 carbon atoms. Based on this quasi-periodicity property, several models
have brought some insights about the electronic structure of TBG, mainly focusing on small twist angles
and low-excitation energies. In that regime, the physics of interest seem to emerge from the interaction
between the electronic states located in the K and K′ valleys of each constituent layer. Those k-points,
also known as Dirac points, are quasi-momenta in the Brillouin zone of graphene for which the conduction
and valence bands intersect conically (see Figure 5.2).

Introduced in 2011, the Bistritzer-MacDonald (BM) [BM11] is the most standard model for TBG. It
is a continuous model, which treats TBG as a smooth system with a periodic potential determined by
the moiré pattern. The BM model additionally assumes that the electrons are independent. It does not
couple the spin-components and neglects the inter-valley coupling (the interaction between K and K′ type
states). In [BM11], the authors notably predict the appearance of a flat band in the TBG band diagram
for a series of magic angles, which might be related to the observed exotic correlation phenomena [Po+18].

The BM model is an effective model which depends on three parameters, fine-tuned to match experi-
mental results. A natural question follows, whether the BM model can be deduced from first-principle. In
[CGG23], the authors answer that question by deriving a continuous model of TBG which is similar to the
BM model in certain regimes, but contains additional terms. In contrast to other approaches, the CGG
model is derived directly from an approximate Kohn-Sham Hamiltonian. While the authors of [CGG23]
provide numerical simulations of their models, their research code was built as a proof of concept, not
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necessarily flexible nor sustainable in the long term.
In this chapter, our first contribution is to lay the fundations for a Julia code, that offers a user-friendly

playground for the simulation of 2D materials, starting with the implementation of the BM and CGG
models for TBG.

Continuous models are computationally efficient, while being able to capture the essential physics of
moiré materials. However, they neglect the possible strong correlation between electrons and the precise
atomic arrangement of atoms in the moiré cell. As a result, they are by nature unable to predict the
atomic-scale details that might affect their electronic properties. In condensed matter physics, a common
approach to compute many-body interactions in strongly correlated materials is to use a tight-binding
approximation with a two-body electron-electron repulsion term. These models are typically parameterized
using Wannier functions of monolayer graphene corresponding to the electronic bands in the energy window
of interest. Once obtained by an ab initio computation, Wannier functions are used to compute the matrix
elements corresponding to the one-body and two-body interactions of the tight-binding Hamiltonian. In
the case of TBG however, the large number of atoms in the moiré cell makes this approach difficult to use
in practice.

One way around this problem is provided by [Bak+18], where the authors propose a systematic pro-
cedure to expand a Wannier function in a basis of Gaussian Type Orbitals (GTOs), for which the matrix
elements of the tight-binding Hamiltonian can be computed analytically. This kind of basis set is widely
used in quantum chemistry for molecular systems, and several libraries are available that already handle
the computation of GTO integrals.

In the second contribution of this chapter, we describe a small numerical experiment where we applied
the routine proposed in [Bak+18] to a Wannier function of monolayer graphene, corresponding to a
targeted valence band.

This chapter is organized as follows. In Section 5.2, we describe the mathematical formalism for the
modelization of monolayer and bilayer graphene. We recall in particular the important properties of
graphene used throughout this chapter. Section 5.3 is concerned with our first numerical contribution.
After recalling the formulation of the rescaled moiré-periodic BM and CGG models, we compute their
discretization in a moiré plane-wave basis. Though mostly calculatory, this section serves as the basis for
a public documentation for our package. We then present our code TwistedBilayerGraphene that runs
BM and CGG computations on TBG, and discuss the perspectives of development of this package.

In Section 5.4, we discuss the compression of Wannier functions on symmetry adapted Gaussian basis
sets. We start by finding and symmetry adapted basis for the Wannier function of graphene corresponding
to a pz-like valence band. We then describe some preliminary results.

5.2 The mathematical description of graphene systems
There exist several conventions for the mathematical description of monolayer and twisted-bilayer
graphene. In order to ease the presentation of the effective CGG model, we adopt the same notations as
in [CGG23], which we briefly recall bellow.

5.2.1 Monolayer graphene
Monolayer graphene is a two-dimensional material made of an atomically thin layer of carbon atoms
arranged on a honeycomb lattice, with minimal inter-atomic distance a ' 2.68 Bohr. Mathematically, it
is described by the 2D Bravais lattice (Figure 5.2)

Rx := a1Z + a2Z, a1 := a0

(
1/2

−
√

3/2

)
, a2 := a0

(
1/2√
3/2

)
, (5.2.1)

which depends on the lattice constant a0 =
√

3a. The unit cell Ω contains two atoms, often labeled “A”
and “B”, at respective positions

RA = 1
3(a1 − a2) and RB = 1

3(a2 − a1).
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KK′
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k2

a∗
1

a∗
2

Figure 5.2 – (Left) Graphene layer and associated Bravais lattice. The red (resp. blue) arrows display
the Cartesian x1 and x2 directions (resp. the lattice vectors). The unit cell Ω appears in blue. The
minimum inter-atomic distance a is shown on the left. (Middle) The corresponding Brillouin zone. The
color convention is the same as (Left). The plot also show some high-symmetry k-points of interest, among
which the K and K′ Dirac points. (Right) Band diagram of graphene along the path Γ → M → K → Γ.
The vertical axis displays the energies of the bands in Hartree. The energies are shifted so that the Fermi
level appears at zero Hartree on the graph. The conduction and valence bands cross conically at point K.

As usual, we denote R∗
x := a∗

1Z + a∗
2Z its reciprocal lattice with unit cell Ω∗. We denote the position

variable by r = (x, z) ∈ R3 where x = (x1, x2) ∈ R2 and z ∈ R are respectively the longitudinal (in-plane)
and transverse (out-of-plane) position variables. We may also denote 0 = (0, 0) the in-plane origin.

The Bloch fibers Hk of the graphene Hamiltonian are labeled by a 2D quasi-momentum k ∈ R2 and
read as

Hk = 1
2(−i∇x + k)2 − 1

2∂
2
z + V (5.2.2)

where the Rx-periodic potential V is typically obtained via Kohn-Sham DFT. The operators Hk act on
L2

per(Ω × R). While they do not have compact resolvent, the Bloch fibers have discrete eigenvalues below
the bottom of their essential spectrum forming the so-called valence bands and low-energy conduction
bands, pictured in band diagram of Figure 5.2. The bands exhibits two characteristic conical intersections
at Fermi level and Dirac points:

K = 1
3(a∗

1 + a∗
2) and K′ = −K. (5.2.3)

As in [CGG23], we define the following operators which are useful to describe the graphene and TBG
symmetries. For all x,y ∈ R2, θ ∈ R and f : R3 → C we denote:

(τyf)(x, z) := f(x − y, z) (horizontal translation of vector y)
(Rθf)(x, z) := f(R−θx, z) (rotation of angle θ around the z-axis)
(Rf)(x, y, z) := f(x,−y,−z) (rotation of angle π around the x-axis)
(Pf)(x, z) := (Rπf)(x, z) = f(−x, z) (in-plane parity operator)

(C f)(x, z) := f(x, z) (complex conjugation)
(S f)(x, z) := f(x,−z) (mirror symmetry w.r.t. the plane z = 0)

The space group of monolayer graphene is given by the semi-direct product

Dg80 = D6h n Rx (5.2.4)
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where D6h is the group generated by Rπ
3

, S , and R.

At Fermi level, the respective eigenspaces of the Bloch Hamiltonians HK and HK′ are two dimensional.
By a symmetry argument detailed in [FW12], we can always choose for any of these eigenspaces a basis
of Bloch waves Φ1(x) := u1(x)eiK·x and Φ2(x) = u2(x)eiK·x such that

R2 π
3
Φ1 = ei

2π
3 Φ1 and R2 π

3
Φ2 = e−i 2π

3 Φ2. (5.2.5)

We call (Φ1,Φ2) a symmetry adapted basis. In particular, it is such that the Fermi energy

vF := 〈Φ1, (−i∂x1)Φ2〉

is a real number.

5.2.2 Bilayer graphene
We now focus on systems built from two parallel layers of graphene, separated by a constant distance
d > 0. As in [CGG23], the layers are placed at z = d

2 and z = −d
2 . From that configuration, the first

system of interest in this chapter is (untwisted) bilayer graphene (UBG), built by introducing a small
disregistry y ∈ Ω of the top layer. The Kohn-Sham potential of the top layer is therefore obtained with

V top
d,y (x, z) = τyV

(
x, z − d

2

)
= V

(
x − y, z − d

2

)
. (5.2.6)

The cases y = 0 and y = 1
2 (a1 + a2) correspond respectively to the so-called “AA” and “AB” stacking.

Untwisted bilayer graphene has a crystalline structure with four atoms in its unit cell. We can therefore
easily compute Kohn-Sham potential, denoted V

(2)
d,y , for example with plane-wave DFT.

On the other hand, twisted bilayer graphene is constructed by rotating the top layer counterclockwise
by − θ

2 and the bottom layer by θ
2 around the z axis. For a given angle θ ∈ R, let cθ := cos θ2 and

εθ := 2 sin θ
2 , and introduce the twisting unitary operator

(Ud,θf)(x, z) = f

(
R∗

−θx, z − d

2

)
= f

(
cθx − 1

2εθJx, z − d

2

)
(5.2.7)

with
J =

(
0 1

−1 0

)
. (5.2.8)

The Kohn-Sham potentials of each individual layers of TBG are obtained by

V top
d,θ = Ud,θV and V bottom

d,θ = U−1
d,θV.

The TBG is not periodic, except for a countable set of twist angles, but is approximated as a moiré
periodic system, with the associated rescaled moiré lattice and unit cell

RM := JRx and ΩM := JΩ.

In Table 5.1, we gather all the notations for the description of TBG, used in the following section. The
q-points and moiré Dirac points K1 and K2 are quasi-momenta of interest in the moiré reciprocal space.

5.3 Effective models for the electronic structure of Twisted-
Bilayer Graphene

Let us now turn to our first contribution. For the sake of completeness, we report briefly below the nota-
tions from [CGG23], used throughout this chapter. However, providing a proper definition and physical
meaning for all objects would inevitably result in a fully fledged re-writing of the first sections of that
paper. We therefore refer the interested reader to the original work [CGG23] for further information on the
CGG model. Our more concise exposition should in turn serve as a guide for the practical implementation
of the models.
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Table 5.1 – Notations and points of interest regarding the definition of monolayer and twisted bilayer
graphene. The index M denotes the quantities of the moiré lattices RM and R∗

M.

Common

J matrix J :=
(

0 1
−1 0

)
Rescalling cθ := cos

(
θ
2
)

εθ := 2 sin
(
θ
2
)

Others Gk := G + k kD := 4π/(3a0)

Monolayer Graphene

Lattice a1 := a0

(
1/2

−
√

3/2

)
a2 := a0

(
1/2√
3/2

)
Reciprocal Lattice a∗

1 :=
√

3kD
( √

3/2
−1/2

)
a∗

2 :=
√

3kD
( √

3/2
1/2

)
Dirac points K := 1

3 (a∗
1 + a∗

2) = kD

(
1
0

)
K′ := −K

Twisted bilayer graphene

Lattice a1,M := Ja1 := a0

(
−

√
3/2

−1/2

)
a2,M := Ja2 := a0

( √
3/2

−1/2

)
q–points q1 := JK q2 := 1

3 (−2a∗
1,M + a∗

2,M) q3 := 1
3 (a∗

1,M − 2a∗
2,M)

Moiré Dirac points K1 := −q2 K2 := q3

5.3.1 Notations and conventions
These notations and remarks are useful for the exposition of BM and CGG.

Multicomponent operators

The effective models studied below are four-component models, which means that a given state α is not
represented by a scalar wave-function but by a four-component wave functions

α =


α1
α2
α3
α4

 .

In addition, BM and CGG approximate the real TBG as a mesoscale 2D system. The BM and CGG
quantum states are thus functions of L2(R2;C4). For multicomponent Hamiltonian, some operations
apply to each component individually, while others mix several components. In physics, the distinction
between the two kinds of operations is often implicit, which might render the formulation of the effective
TBG models difficult for the unfamiliar reader. For the sake of clarity, we detail three specific operations
that might cause some misunderstanding in following exposition.

1. In the section bellow, the gradient operator always writes (−i∇x)(•) =
(

−i∂x1(•)
−i∂x2(•)

)
, whether

applied to a single or multicomponent function. The partial derivatives then act component-wise.
For example, we have for all 2-component vector α ∈ L2(R2,C2)

(−i∇x)
(
α1
α2

)
=

 −i∂x1

(
α1
α2

)
−i∂x2

(
α1
α2

)
 =

 −i
(
∂x1α1
∂x1α2

)
−i
(
∂x2α1
∂x2α2

)
 . (5.3.1)
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2. A given 2 × 2 (or 4 × 4) matrix valued function M ∈ L2(R2;C2×2) acts on a vector of components

with the usual matrix vector product M
(
α1
α2

)
=
(
M11α1 +M12α2
M21α1 +M22α2

)
. Note the association

with the gradient

M(−i∇)
(
α1
α2

)
=

 −iM
(
∂x1α1
∂x1α2

)
−iM

(
∂x2α1
∂x2α2

)
 . (5.3.2)

3. For all f, g ∈ L2(R2;C) and M ∈ L∞(R2;Cd×d), the notation 〈f,Mg〉L2(R:C) refers to the complex
valued d× d matrix with entries

〈f,Mg〉L2(R2,C) ∈ C2×2 and [〈f,Mg〉L2(R2,C)]ij = 〈f, [M ]ijg〉L2(R2);C ∀ 1 6 i, j 6 d. (5.3.3)

Rotated Pauli matrices

The rotated Pauli matrices are operators involved in the kinetic term of the BM and CGG models. We
recall that standard Pauli matrices are defined by

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, and σ3 :=

(
1 0
0 −1

)
.

For all θ ∈ R and sign η ∈ {−1, 1}, we define the η θ2 rotated Pauli matrix as

σηθ/2 := e−ηi θ
4σ3(σ1, σ2)eηi θ

4σ3 =
((

0 e−iη θ
2

eiη
θ
2 0

)
,

(
0 −ie−iη θ

2

ieiη
θ
2 0

))
. (5.3.4)

This operator mixes components. Its action on L2(R2;C2) reads for all 2-component vector
(
a
b

)
∈ C2

σηθ/2 ·
(
a
b

)
=
(

0 e−iη θ
2 (a− ib)

eiη
θ
2 (a+ ib) 0

)
.

5.3.2 The BM and CGG eigenvalue problems
In this section, we fix x ∈ R2 and an angle θ ∈ R.

5.3.2.1 Rescaled moiré-periodic BM Hamiltonian

The rescaled moiré-periodic formulation of the BM Hamiltonian is the self-adjoint operator

HBM
θ := P

(
vFσ−θ/2 · (−i∇x) ε−1

θ V
ε−1
θ V∗ vFσθ/2 · (−i∇x)

)
P ∗ (5.3.5)

on L2(R2;C4) with domain H1(R2;C4). The Bistritzer-MacDonald potential V : R2 → C2×2 is the matrix
valued function

V(x) :=
3∑
j=1

Vje
−iqj ·x, where Vj :=

(
wAA wABω

j−1

wABω
j−1 wAA

)
.

In the above expression, ω = ei2π/3, wAA and wAB are the two real parameters describing the inter-layer
coupling in AA and AB stackings and

P (x) :=
(
eiK1·xI2 0

0 eiK2·xI2

)
.

Note that since ω2 = ω and ω2 = ω, one simply has V3 = V ∗
2 . The operator P is a gauge transformation

that allows the BM Hamiltonian to be R∗
M periodic.
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Let us give a simpler formulation of (5.3.5). For the sake of clarity, we use the block matrix notation

P (x) =:
(
PK1(x) 0

0 PK2(x)

)
.

Doing the full matrix multiplication in Equation 5.3.5 we obtain

HBM
θ =

(
PK1(x)vF

[
σ−θ/2 · (−i∇x)

]
PK1(x)∗ PK1(x)ε−1

θ V(x)PK2(x)∗

PK2(x)ε−1
θ V(x)∗PK1(x)∗ PK2(x)

[
vFσθ/2 · (−i∇x)

]
PK2(x)∗

)
.

For the diagonal terms, one has for all sign η ∈ {−1, 1}

vFσηθ/2 · (−i∇x) = vF

(
0 e−ηi θ

2 (−∂y − i∂x)
eηi

θ
2 (∂y − i∂x) 0

)
,

so that for j = 1, 2

PKj (x)vF[σηθ/2 · (−i∇x)]PKj (x)∗ = vFσηθ/2 · (−i∇ − Kj).

For the off-diagonal term, we use the fact that V is a multiplicative potential to write

PKj (x)ε−1
θ V(x)PKj′ (x)∗ = ei(Kj−Kj′ )·xε−1

θ V(x).

As a result we obtain

HBM
θ =

(
vFσ−θ/2 · (−i∇ − K1) ei(K1−K2)·xε−1

θ V(x)

e−i(K1−K2)·xε−1
θ V(x)∗ vFσθ/2 · (−i∇ − K2)

)
. (5.3.6)

5.3.2.2 Rescaled moiré-periodic CGG Hamiltonian

The writing of the CGG Hamiltonian requires two additional definitions. Let V be the monolayer graphene
Kohn-Sham Hamiltonian. The first feature of CGG is do define for all z ∈ R a TBG potential correction
term

Vint,d(z) =
 

Ω
Vint,d,y(z)dy. (5.3.7)

For all disregistry y ∈ Ω, Vint,d,y is defined by

Vint,d,y(z) =
 

Ω

(
V

(2)
d,y (x, z) − V

(
x, z + d

2

)
− V

(
x − y, z − d

2

))
dx, (5.3.8)

where we recall that V (2)
d,y is the Kohn-Sham potential of untwisted bilayer graphene with disregistry y.

The correction term Vint,d has been introduced in [Tri+16] to define an approximate Kohn-Sham potential
from bilayer 2D materials. Second let f, g ∈ L2

loc(R3;C) be Rx-periodic in their in-plane variable. For all
signs η, η′ ∈ {0, 1}, we define the bilayer scalar product

((f, g))ηη
′

d (X) =
ˆ

Ω×R
f

(
x − η

1
2JX, z − η

d

2

)
g

(
x − η′ 1

2JX, z − η′ d

2

)
dxdz.

We can now write the effective rescaled moiré-periodic CGG Hamiltonian. It expresses for all x ∈ R2

as the sum of three terms of order −1, 0 and 1 in εθ:

Hd,θ := ε−1
θ

(
W̃+
d (x) Ṽd(x)

Ṽd(x)∗ W̃−
d (x)

)
+
(

vFσ−θ/2 · (−i∇K1) cθJÃd(x) · (−i∇K2)
cθJÃ

∗
d(x) · (−i∇K1) vFσθ/2 · (−i∇K2)

)
− εθ

2 ∇ · (Sd(x)∇•)

(5.3.9)
Like BM, it is an unbouded self-adjoint operator with domain H1(R2;C4). The above terms are defined
as follows:
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1. the potentials Ṽd and W̃d are 2 × 2 matrix-valued defined for all 1 6 j, j′ 6 2 as

[Ṽd]j,j′ :=
(
(
(
V + Vint,d(· + d

2 )
)
uj , u

′
j

)
)

[W̃d]j,j′ := ((ujuj′ , V ))±∓
d (x) +

(
W±

int,d

)
j,j′

with
(
W±

int,d

)
j,j′

:=
ˆ

Ω×R
(uju′

j)
(
x, z ∓ d

2
)
Vint,d(z)dxdz.

Note that u1 and u2 are the symmetry adapted Bloch waves introduced in Section 5.2.1.

2. the overlap matrix Sd writes

Sd(x) :=
(

I2 Σ̃d(x)
Σ̃∗
d(x) I2

)
where Σ̃d is the 2 × 2 matrix-valued function [Σ̃d]j,j′(x) =

(
(uj , u′

j

)
)+−
d (x).

3. Ãd := (−i∇ − q1)Σ̃d, where q1 is as in Table 5.1.

5.3.2.3 The BM and CGG eigenvalue problems

After application of the Bloch theorem, the BM and CGG problems consist in solving the respective
eigenvalue and generalized eigenvalue problems

HBM
θ,k αk = εn,kαk (BM) Hd,θ,kαn,k = εn,kSdαn,k (CGG) (5.3.10)

where for all n and k ∈ Ω∗
M: (εn,k, αn,k) ∈ R ×H1(ΩM;C4).

Let us now remark that, in contrast with the other Hamiltonian operators encountered in this
manuscript, the BM and CGG Hamiltonians are not bounded bellow. Indeed, the evolution of the quasi
particles in the K and K′ valleys close to the Fermi energy is mediated by a Dirac Hamiltonian, this com-
ing from the specific conical crossing of the bands. The BM and CGG effective models therefore contain
a momentum operator P̂ = −i∇ whose spectrum is not bounded below. For that reason, the eigenvalues
of interest belong to the bulk of the spectrum, near the Fermi energy µF = 0.

This has very practical consequences. Traditional eigensolvers are typically designed for problems with
isolated eigenvalues at the bottom (or top) of the spectrum. They often only need matrix-vector product
(application of the Hamiltonina on a trial state) and scalar product operations to compute these eigenval-
ues. This kind of matrix-free implementation saves a lot of memory, especially in Fourier discretization
where the number of basis functions can be very large. Computing eigenvalues in the bulk of the spectrum
comes with additional difficulties, such as spectral pollution [LS10], and extra care has to be taken in that
case.

To get around this problem, our code works by assembling the full matrix of the BM and CGG
Hamiltonians, and by selecting the spectrum around Fermi level. Still, we provide bellow the formulae for
the BM and CGG terms as matrix-vector product, to serve for future developments.

5.3.3 Plane-wave discretization conventions
To start with, let us detail our discretization conventions. In order to match the conventions of DFTK,
we define for all G ∈ R∗ the plane-wave of momentum G by

eG(r) := 1√
|Ω|

eiG·r, ∀r ∈ R3. (5.3.11)

It is such that for all G,G′ ∈ R∗, 〈eG, eG′〉L2
per(Ω) = δG,G′ . The Fourier expansion of any R-periodic

function u ∈ L2
per(Ω) then writes

u(r) := 1√
|Ω|

∑
G∈R∗

u[G]eiG·r. (5.3.12)
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The computation of the bilayer scalar products, needed for the CGG potential, require to discretize
an integral over Ω × R. We choose to compute this integral in Fourier space, by approximating the 2D
monolayer graphene as a 3D-periodic system with lattice

Rh = Rx × hZ, and R∗
h = R∗

x × 2π
h
Z := R∗

x × R∗
z,h (5.3.13)

with unit cell Ωh = Ω × [0, h), and where h > 0 is the height of the supercell in the transverse direction.
When necessary, we will split the momenta G of R∗

h as one in-plane and one out-of plane momenta:

G = (Gx,Gz) with Gx ∈ R∗
x and Gz ∈ R∗

z,h (5.3.14)

With that convention, the correction term Vint,d is approached by a Rz,h periodic function, which is a
reasonable approximation as long as h � 1.

5.3.4 Discretization of BM in a plane-wave basis
For all k ∈ R2, the fibers of the BM Hamiltonian are the operators

HBM
θ,k =

(
vFσ−θ/2 · (−i∇ + k − K1) ei(K1−K2)·xε−1

θ V(x)

e−i(K1−K2)·xε−1
θ V(x)∗ vFσθ/2 · (−i∇ + k − K2)

)
(5.3.15)

acting on L2
per(ΩM;C4). Let αk be in L2

per(ΩM;C4) and let αj,k ∈ L2
per(ΩM;C) such that for all x ∈ R2

αk(X) := [αj,k(x)]16j64 .

Since αk is moiré-periodic, each of its component can be expressed as a Fourier series on the moiré
reciprocal lattice R∗

M

αj,k(x) = 1√
|ΩM|

∑
G∈R∗

M

αj,k[G]eiG·x.

We can then compute the action of HBM
θ,k on the individual Fourier modes. In order to simplify the

computations, we can split the fiber HBM
θ,k as the sum of a diagonal kinetic term and an off-diagonal

potential term

HBM
θ,k =:

(
TA,k,θ VAB,θ(x)

VAB,θ(x)∗ TB,k,θ

)
=
(

TA,k,θ 0
0 TB,k,θ

)
︸ ︷︷ ︸

=: TBM
k,θ

+
(

0 VAB,θ(x)
VAB,θ(x)∗ 0

)
︸ ︷︷ ︸

=: VBM
θ (x)

.

5.3.4.1 Kinetic term TBM
k,θ

Let us focus on the top layer kinetic term TA,k,θ. By linearity

TA,k

(
α1,k(x)
α2,k(x)

)
= 1√

|ΩM|

∑
G∈R∗

M,h

TA,k

(
α1,k[G]eiG·x

α2,k[G]eiG·x

)
.

Now, it follows from Equation 5.3.4 that for all G ∈ R∗
M

TA,k

(
α1,k[G]eiG·x

α2,k[G]eiG·x

)
= vFσ−θ/2 · (−i∇ + k − K1)

(
α1,k[G]eiG·x

α2,k[G]eiG·x

)
=
(
β1,k[G]eiG·x

β2,k[G]eiG·x

)
,

where the β coefficients are given by(
β1,k[G]
β2,k[G]

)
:= vFσ−θ/2 · (G + k − K1)

(
α1,k[G]
α2,k[G]

)
.

148



The same holds mutatis mutandis for the bottom layer. Using the above expression, we identify the Fourier
component of the vector TBM

k,θ αk on the reciprocal lattice vector G ∈ R∗
M

(TBM
k,θ αk)[G] =


vFσ−θ/2 · (G + k − K1)

(
α1,k[G]
α2,k[G]

)
vFσθ/2 · (G + k − K2)

(
α3,k[G]
α4,k[G]

)
 . (5.3.16)

We also deduce the expression of the G,G′ element of the Fourier matrix of TBM
k,θ

[TBM
k,θ ]G,G′ = δGG′

(
vFσ−θ/2 · (G + k − K1) 0

0 vFσθ/2 · (G + k − K2)

)
. (5.3.17)

One can use the respective expressions (5.3.16) and (5.3.17) to implement the BM kinetic term in a matrix-
free or a full matrix fashion. Let us add that since the matrix in equation (5.3.17) is block diagonal, its
spectral decomposition can be computed at low computational cost, with 2 × 2 diagonal blocks, making
it a good candidate for diagonal preconditioning.

5.3.4.2 Potential term VBM
θ

A straightforward way to compute the action of V̂BM
θ in a matrix free fashion, is to compute the multi-

plication by V̂BM
θ in real space by the mean of discrete Fourier and inverse Fourier transforms. However,

in the present case, it proves advantageous to directly compute the matrix of V̂BM
θ in Fourier space. By

using the relation
K1 − K2 = −q1,

we compute for all G,G′ ∈ R∗
M

〈eG,VAB,θeG′〉L2(R2) = ε−1
θ

3∑
j=1

Vjδ(G′−G),(qj−q1),

where we recall that the scalar product acts on each individual component of VAB,θ. The Fourier matrix
of the BM potential is given for all G,G′ ∈ R∗

M by

[V̂BM
θ ]G,G′ =

 0 〈eG,VAB,θeG′〉L2(R2)〈
eG,V∗

AB,θeG′

〉
L2(R2)

0


which ultimately writes

[V̂BM
θ ]′G,G = ε−1

θ

3∑
j=1

(
0 Vjδ(G′−G),(qj−q1)

V ∗
j δ(G′−G),(q1−qj) 0

)
. (5.3.18)

Let us point out the change of sign in the two Kronecker deltas in the above expression.

5.3.5 Discretization of the CGG Hamiltonian in a plane-wave basis

For clarity, we denote by T(−1)
d,θ , T(0)

d,θ and T(1)
d,θ the CGG Hamiltonian terms, of respective order −1, 0 and

1 in εθ. We apply the same discretization procedure as for BM to the three CGG terms independently.
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5.3.5.1 Discretization of the CGG potential T(−1)
d,θ

As in the BM case, the term T(−1)
d,θ can simply be applied in real space, by means of discrete Fourier and

inverse Fourier transforms, in matrix-free fashion. Otherwise, one needs to compute the matrix elements
of T(−1)

d,θ in the moiré Fourier basis, which depends on three basic elements: the K Dirac point sym-
metry adapted basis (Φ1,Φ2), the discrete bilayer scalar products ((·, ·))ηη

′

d and the Kohn-Sham potential
correction Vint,d.

Monolayer Dirac points natural basis

The goal of this section is compute the symmetry adapted basis (Φ1,Φ2) associated to the degenerate
valence π-band of monolayer graphene at Dirac point K or K′, as defined in Section 5.2.1. We recall that

Φ1 ∈ Ker (R 2π
3

− ω) and Φ2 ∈ Ker (R 2π
3

− ω2). (5.3.19)

Numerically, the diagonalization of the monolayer graphene Kohn-Sham DFT Hamiltonian at Dirac point
K provides a basis

ϕa, ϕb ∈ Ker
(

R 2π
3

− ω
)

+ Ker
(

R 2π
3

− ω2
)
. (5.3.20)

Let u1, u2, ua and ub be such that

Φ1(r) =: eiK·ru1(r), Φ2(r) =: eiK·ru2(r),
ϕa(r) =: eiK·rua(r), ϕb(r) =: eiK·rub(r).

Note that the basis (Φ1,Φ2) can be computed only with u1 since u2 = C P(u1). We remark that by
equation (5.3.19), for all j = 1, 2

(R 2π
3

Φj)(r) = ωjΦj(r) ⇐⇒ e
iR 2π

3
K·r(R 2π

3
uj)(r) = ωjeiK·ruj(r)

⇐⇒ ei(K+Gs)·r(R 2π
3
uj)(r) = ωjeiK·ruj(r)

⇐⇒ eiGs·r(R 2π
3
uj)(r) = ωjuj(r),

where Gs is the reciprocal lattice vector such that R 2π
3

K = K + Gs. Second, by Equation 5.3.20, there
exist complex numbers c1

a and c2
a such that

ua = c1
au1 + c2

au2.

Combining these equalities we obtain

eiGs·r(R 2π
3
ua) − ω2ua = c1

a(eiGs·rR 2π
3

− ω2)u1,

so that
u1 ∈ Span

(
eiGs·r(R 2π

3
ua) − ω2ua

)
.

Let us set

ũ :=
eiGs·r(R 2π

3
ua) − ω2ua∥∥∥eiGs·r(R 2π

3
ua) − ω2ua

∥∥∥
L2

per(Ω)

.

Since u1 is on the unit sphere, there exists α such that u1 = eiαũ. Then

u2 = C P(u1) = e−iαC P(ũ). (5.3.21)

It only remains to choose α such that the Fermi velocity vF := 〈Φ1, (−i∂x1)Φ2〉L2 is a real number. Let〈
eiK·rũ, (−i∂x1)eiK·rC P(ũ)

〉
= a+ ib. Then

vF = e−i2α(a+ ib).

Hence
Im (vF) = 0 ⇐⇒ cos(2α)b− sin(2α)a = 0 ⇐⇒ α = 1

2arctan
(
b

a

)
.
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Algorithm 4: Computing Dirac point natural basis
Given: any entry basis (ua, ub)

1. Compute ũ :=
eiGs·r(R 2π

3
ua) − ω2ua∥∥∥eiGs·r(R 2π

3
ua) − ω2ua

∥∥∥
L2

per

2. Compute
〈
eiK·rũ, (−i∂x1)eiK·rC P(ũ)

〉
L2

per
= a+ ib

3. Set α = 1
2arctan

(
b

a

)
4. Set u1 = eiαũ and u2 = e−iαC P(ũ)

The global procedure to compute (Φ1,Φ2) is summarized in algorithm 4.

Let O be a unitary operator such that O(R∗
h) ⊂ R∗

h. In algorithm 4, the action of O on ua (resp. ub)
is computed using the Fourier decomposition of ua (resp. ub) in the truncated lattice R∗

h (see. (5.3.13)).
Since

Oua(x) = 1√
Ωh

∑
G∈R∗

h

ua[G]e〈O∗x,G〉 = 1√
Ωh

∑
G∈R∗

h

ua[G]e〈x,OG〉 = 1√
Ωh

∑
G∈R∗

h

ua[O∗G]e〈x,G〉.

we find for all G ∈ R∗
h

(Oua)[G] = ua[O∗G]. (5.3.22)

Bilayer potential correction

We now turn to the numerical evaluation of Vint,d. For all d > 0, z ∈ [0, h) and for a given disregistry
y ∈ Ω, we have

Vint,d,y(z) = 1
|Ω|

ˆ
Ω
V

(2)
d,y (x, z) − V (x, z + d

2 ) − V (x − y, z − d
2 ) dx

= 1
|Ω|

ˆ
Ω
V (2)(x, z) − V (x, z + d

2 ) − V (x, z − d
2 )dx

discretization' 1
|Ω|3/2√

h

∑
G∈R∗

h

[
V (2)[G] − V [G]

(
eiGz

d
2 + e−iGz

d
2

)]ˆ
Ω
eiG·[x,z]dx

= 1√
|Ω|h

∑
Gz∈R∗

h,z

[
V (2)[0,Gz] − 2V [0,Gz] cos

(
Gz

d
2
)]
eiGzz.

The second equality follows from the Rx-periodicity of V in the x direction. The approximation at
the third line is reasonable as long as h � 1. We deduce from the last equality that Vint,d,,y can be
approximated in Fourier space, for all Gz ∈ R∗

h,z, by

Vint,d,y[Gz] = 1√
|Ω|

[
V (2)[0,Gz] − 2V [0,Gz] cos

(
Gz

d
2
)]
. (5.3.23)

The total potential correction is then simply approached by a Riemann sum over a uniform sample of
disregistries y (which is the optimal quadrature scheme due to the periodicity and smoothness of the
potentials).
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Bilayer scalar product

Let f, g ∈ L2
per(Ω × [0, h);C). For all signs η, η′ ∈ {−1,+1} and vector X ∈ R2

((f, g))η,η
′

d (X) :=
ˆ

Ω×R
f(x − η

2JX, z − η d2 )g(x − η′

2 JX, z − η′ d
2 )dxdz

discretization' 1
|Ω|h

∑
G,G′∈R∗

h

f [G]g[G′]ei
η
2 G·(JX,d)e−i η

′

2 G′·(JX,d)
ˆ

Ω×[0,h)
ei(G′−G)·(x,z)dxdz︸ ︷︷ ︸
=δGG′ |Ω|h

=
∑

G∈R∗
h

f [G]g[G]ei
1
2 (η−η′)G·(JX,d)

tr{J}=−J=
∑

Gx∈R∗
x

 ∑
Gz∈R∗

z,h

f [Gx,Gz]g[Gx,Gz]ei
1
2 (η−η′)Gzd

 ei
1
2 (η′−η)JGx·X

= 1√
|JΩ|

∑
Gx∈R∗

x

√|JΩ|
∑

Gz∈R∗
z,h

f [Gx,Gz]g[Gx,Gz]ei
1
2 (η−η′)Gzd

 ei
1
2 (η′−η)JGx·X.

Hence if
Cη,η

′

d (Gx) :=
√

|JΩ|
∑

Gz∈R∗
z,h

f [Gx,Gz]g[Gx,Gz]ei
1
2 (η−η′)Gzd,

then

((f, g))η,η
′

d (X) = 1√
|JΩ|

∑
Gx∈R∗

x

(
δη=η′

√
|JΩ|〈f, g〉L2

per
+ δη 6=η′Cη,η

′

d (Gx)
)
ei

1
2 (η′−η)JGx·X.

We deduce that in Fourier space for all G ∈ R∗
M or equivalently JGx ∈ R∗

x

[(̂(f, g))
η,η′

d ](JGx) =


δGx=0

√
|JΩ|〈f, g〉L2

per
for η = η′,

Cη,η
′

d (Gx) for η = −1, η′ = 1,

Cη,η
′

d (−Gx) for η′ = −1, η = 1

,

which can be written in the simpler form

[(̂(f, g))
η,η′

d ](JGx) = δη=η′δGx=0
√

|JΩ|〈f, g〉L2
per

+ δη 6=η′Cη,η
′

d (η′Gx) (5.3.24)

Potential correction terms

Most part of the effective local potential boils down to compute a bilayer scalar product, as described in
equation (5.3.5.1). The only remaining term is the second term in the right-hand side of

[W̃η
d(X)]jj′ := ((ujuj′ , V ))η(−η)

d (X) + (W η
int,d)jj′ , (5.3.25)

involving the potential correction Vint,d, for all j, j′ ∈ {1, 2}, sign η ∈ {−,+} and X ∈ R2. One has:
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(W η
int,d)jj′ =

ˆ
Ω×R

ujuj′(x, z − η d2 )Vint,d(z)xdz

discretization' 1√
|Ω| × h

∑
G∈R∗

h

∑
G′

z∈R∗
z,h

ujuj′ [G]Vint,d[G′
z]e

−iGzη
d
2

ˆ
Ω×[0,h)

eiGx·Xei(Gz+G′
z)·zxdz︸ ︷︷ ︸

δGx=0|Ω| × δ(Gz=−G′
z)h

=
√

|Ω|
∑

Gz∈R∗
z,h

ujuj′ [0,Gz]Vint,d[−Gz]e−iGzη
d
2

=
√

|Ω|
∑

Gz∈R∗
z,h

ujuj′ [0,Gz]Vint,d[Gz]e−iGzη
d
2 .

Hence we have for all JGx ∈ R∗
x

(Ŵ η
int,d)jj′(JGx) = δGx=0

∑
Gz∈R∗

z,h

|Ω|ujuj′ [0,Gz]Vint,d[Gz]e−iGzη
d
2 . (5.3.26)

In practice the table of Fourier coefficients of ujuj′ is obtained by multiplying both functions in real space
and going back to frequencies space with an inverse fast Fourier transform.

Full CGG potential term

From the definitions of the CGG potential terms, using the equations (5.3.23), (5.3.24), (5.3.26) as well
as algorithm 4, we can compute the moiré Fourier coefficients W̃+

d [G], W̃−
d [G], Ṽd[G] and Ṽ∗

d[G], for all
G ∈ R∗

M. The Fourier matrix of T(−1)
d,θ is then obtained for all G,G′ ∈ R∗

M as

[T(−1)
d,θ ]G,G′ = 1

εθ
√

|ΩM

(
W̃+
d [G − G′] Ṽd[G − G′]

Ṽ∗
d[G − G′] W̃−

d [G − G′]

)
(5.3.27)

5.3.5.2 Kinetic/Magnetic–like CGG terms T(0)
d,θ

Matrix-free implementation

As seen in (5.3.9), the diagonal part of T(0)
d,θ is the same as the kinetic term of the BM Hamiltonian. It

thus discretizes exactly as in (5.3.17). For the off-diagonal part, let n ∈ {1, 2}. We abbreviate

MKn
(x) := J (−i∇ − q1) Σ̃d(x) · (−i∇ − Kn) .

If xj denotes the j-th component of a given vector x, one has

MKn
(x) = J

[
(−i∂1 − q1,1)Σ̃d(x), (−i∂2 − q1,2)Σ̃d(x)

]
·
(

−i∂1 − Kn,1
−i∂2 − Kn,2

)
= JΞ(x) ·

(
−i∂1 − Kn,1
−i∂2 − Kn,2

)
, (5.3.28)

where we introduced Ξ(x) :=
[
(−i∂1 − q1,1)Σ̃d(x), (−i∂2 − q1,2)Σ̃d(x)

]
∈ (C2×2)2.
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Let us first derive the matrix free implementation of the off-diagonal term. From (5.3.29), we obtain

for all k in the moiré Brillouin zone and all vector
(
α1,k(x)
α2,k(x)

)

MKn(x)
(
α1,k(x)
α2,k(x)

)
=
∑
j=1,2

(JΞ)j(x) ×
(

(−i∂j − Kn,j)α1,k(x)
(−i∂j − Kn,j)α2,k(x)

)
. (5.3.29)

The two matrix-vector products on the right-hand side of (5.3.29) can be computed in real space. However,
since both Ξ and αj are moiré-periodic functions, they are readily computed in Fourier space for all
G ∈ R∗

M,h with

(JΞ)j [G] = J [(Gj − q1,j)Σ̃d[G], (Gj − q1,j)Σ̃d[G]] = [(G2 − q1,2)Σ̃d[G],−(G1 − q1,1)Σ̃d[G]] (5.3.30)

and
F ((−i∂j − Kn,j)αj,k) [G] = (G + kj − Kn,j)αj,k[G]. (5.3.31)

Note that in (5.3.30), the matrix J acts on the components of the vector Ξ. We then recovered the vectors
in real space by an inverse fast Fourier transform.

Full matrix implementation

Let us now derive the full matrix term MKn in the moiré Fourier basis. Again since Ξ is a (matrix-valued)
moiré-periodic function, we introduce the Fourier decomposition for all x ∈ R2 and j = 1, 2

Ξj(x) = 1√
|ΩM|

∑
G∈R∗

M,L

Ξj [G]eiG·x.

A straightforward computation yields for all G,G′ ∈ R∗
M

〈eG,MKn
(x)eG′〉L2(R2,C) = 1√

|ΩM|

∑
j=1,2

(JΞ)j [G − G′](G′ + kj − Kn,j).

In order to compute the sub-diagonal term 〈eG,MKn
(x)∗eG′〉L2(R2,C), we need to compute with care the

ajoint of MKn
(x)∗. For all n ∈ {1, 2}, we can show that

((JΞ) · (−i∇ −Kn))∗ = (JΞ∗) · (−i∇ −Kn) = (JΞ)∗ · (−i∇ −Kn). (5.3.32)

Therefore

〈eG,MKn(x)∗eG′〉L2(R2,C) = 1√
|ΩM|

∑
j=1,2

(JΞ∗)j [G − G′] × (G′ + kj − Kn,j).

The full matrix of the magnetic term is given for all G,G′ ∈ R∗
M by

( 0 〈eG,MKn
(x)eG′〉L2(R2,C)

〈eG,MKn
(x)∗eG′〉L2(R2,C) 0

)
=

1√
|ΩM|

∑
j=1,2

(
0 (JΞ)j [G − G′](G′ + kj − K2,j)

(JΞ∗)j [G − G′] × (G′ + kj − K1,j) 0

)
.

5.3.5.3 Term with second derivatives T(1)
d,θ

Diagonal term

The computations for the diagonal term are straightforward, using the same Fourier decomposition as the
last sections. The action of the Laplacian term writes for all k ∈ Ω∗ and n ∈ {1, 2}.

−∆Kn

(
α1,k(x)
α2,k(x)

)
= 1√

|ΩM|

∑
G∈R∗

M,L

|Gk − Kn|2
(
α1,k[G]eiG·x

α2,k[G]eiG·x

)
.
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Alternatively, the full Fourier matrix of −∆Kn is block diagonal and writes for all G,G ∈ R∗
M,L

[−∆Kn
]G,G =

(
|Gk − Kn|2 0

0 |Gk − Kn|2
)
. (5.3.34)

Off-diagonal term

Let us consider the off-diagonal first order term

T(2)(x) :=

 0 T(2)
K1,K2

(x)[
T(2)

K1,K2

]∗
(x) 0

 ,

where
T(2)

K1,K2
(x) := (−i∇K1) ·

[
Σ̃d(x)(−i∇K2)•

]
.

Then we have for all G,G′ ∈ R∗
M〈

eG, T
(2)
K1,K2

eG′

〉
L2(R2,C)

= (G + k − K1) · (G′ + k − K2) +
〈
eG, Σ̃deG′

〉
L2(R2,C)

= 1√
|ΩM|

(G + k − K1) · (G′ + k − K2)
∑

G′′∈R∗
M,L

Σ̃d[G′′] 〈eG, eG′+G′′〉︸ ︷︷ ︸
δ(G−G′),G′′

= 1√
|ΩM|

[(G + k − K1) · (G′ + k − K2)] Σ̃d[G − G′].

Similarly,〈
eG,

[
T

(2)
K1,K2

]∗
eG′

〉
L2(R2,C)

= 1√
|ΩM|

[(G + k − K2) · (G′ + k − K1)] [Σ̃d]∗[G − G′].

As a result the full matrix of the off-diagonal first order term for all G,G′ ∈ R∗
M

[
T(2)

]
G,G′

=

1√
|ΩM|

(
0 (G + k − K1) · (G′ + k − K2)Σ̃d[G − G′]

(G + k − K2) · (G′ + k − K1)[Σ̃d]∗[G − G′] 0

)

5.3.6 The TwistedBilayerGraphene.jl package
Let us now give a brief presentation of our Julia package TwistedBilayerGraphene.jl, in which we im-
plemented the BM and CGG models for TBG. This package was designed as an overlay to the DFTK code
[HLC21] from which it borrows the structure, the flexibility and ergonomics. We refer to Section 4 for
a brief presentation of DFTK. As any Julia package, our code and DFTK can be easily installed on many
platforms, and do not require any configuration or definition of specific environments.

The workflow of our package is simple:

1. The user first creates a GrapheneSystem structure, compatible with DFTK conventions, which encap-
sulates the geometry of monolayer graphene, the chosen twist-angle θ for TBG, and informations on
the discretization basis set. For example, let us setup a quick computation for TBG at magic angle
θ = 1.1◦, all other parameters having default value:

geometry = GeometryParameters(; θ =1.1)
convergence = ConvergenceParameters()
monolayer = MonolayerGraphene(; geometry, convergence)
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The ConvergenceParameters structure controls the size of the plane-wave discretization basis, and
when needed (e.g. for the computation of the CGG potential (5.3.27)), the size of the Monkhorst-
Pack grid and the SCF tolerance for DFT computations on monolayer graphene.

2. The user then selects a model for TBG: currently either BM or CGG. The model structure contains
the list of terms to include in the TBG Hamiltonian, compatible with DFTK routines for the resolution
of the Bloch fibers’ eigenvalue problems. In our example, the BM model is initialized with

tbg_model = BM(monolayer)

or alternatively in its chiral version [Bec+20]

tbg_model = BM(monolayer; chiral=true)

It is also possible to construct a custom model by selecting each terms independently, as in the BM-
like model (see [CGG23]), obtained by selecting the diagonal kinetic term and off-diagonal potential
term of CGG, and by neglecting the CGG overlap

import TwistedBilayerGraphene: CCGVlocOperators, miGradOperator
terms = [CGGVlocOperator, # off-diagonal CGG potential

miGradOperator, # diagonal CGG kinetic term
]
tbg_model = TBG(monolayer, terms; name=’’BM like’’)

Note that the CGG overlap is not computed for custom models, unless explicitly asked.

3. When the band model is applied to the GrapheneSystem, our code launches with DFTK the ab initio
computations needed to build the selected TBG Hamiltonian;

4. The band diagram is then simply computed in the moiré Brillouin zone with a call to the function
plot_tbg_bandstructure, which uses the DFTK eigensolver routines. In our example, we write

BM_bandplot = plot_tbg_bandstructure(tbg_model)

which produces the first band diagram of Figure 5.3. The figure also contains band diagrams of chiral
BM, CGG and BM-like for the same configuration. Other examples can be found in the documentation
of our code at https://tbg.hollved.org/stable/.

5.3.7 Conclusions and perspectives
In this work, we have established the groundwork for a user-friendly playground for the simulation of
2D materials, as an overlay to DFTK. Our current implementation allows to generate state-of-the art BM
and CGG band diagrams for twisted-bilayer graphene in a few simple calls. It also includes automated
tests to ensure the code’s resilience over time, enabling adaptation to future updates of Julia and DFTK.
Additionally, we have provided a public documentation and an API to facilitate usage for new users and
streamline the integration of new functionalities.

The perspective are numerous. At present day, our code constructs the full matrices of the BM and
CGG Hamiltonians within the selected plane-wave discretization basis set. One potential direction is
to explore algorithms for computing eigenvalues within the bulk spectrum of these operators, enabling
a matrix-free implementation of the BM and CGG models. This approach could significantly reduce
memory requirements and computational time for the calculations.
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Other further developments will focus on incorporating additional features into the package. Recent
updates in DFTK have introduced phonon diagrams, paving the way for integrating phonon and electron-
phonon interaction models for TBG into our package. Additionally, the structure of our code, mainly
based on general purpose routines of DFTK, allow the future integration of methods for the simulation of
other 2D materials.

Figure 5.3 – (Up-left) BM, (up-right) chiral BM, (down-left) BM-like and (down-right) CGG band dia-
grams of TBG, as introduced in [CGG23]. In the k-path, the Γ point is the origin of the moiré lattice.
The points K1 and K2 are moiré quasi-momenta defined in Table 5.1.

5.4 First steps toward large tight-binding simulation of multi-
layer graphene with compressed Wannier functions

As discussed earlier, the physics of interest in TBG is partly related to the interaction of electronic states
located in the K and K′ valleys of graphene, where the valence bands of graphene intersect conically. A
natural way to take these interactions into account is to use a tight-binding approximation parametrized
by Maximally localized Wannier functions (MLWFs) for these two specific valence bands.

Using a standard Marzari-Vanderbilt (MV) wannierization procedure [MV97] (see Section 4), one can
easily compute these two MLWFs w1 and w2, which have a shape resembling a pz atomic orbital in non-
interacting-electron atoms (Figure 5.4). In fact, one only needs a single Wannier function, as w2 is obtained
from w1 by translation and mirror symmetry. In the following we simply denote wz = w1. Unfortunately,
the MV numerical procedure produces fully numerical Wannier functions, obtained as tabulated values
on a real or Fourier grid, which makes their practical use in a large tight-binding computation difficult.

In [Bak+18], the authors proposed a systematic way to expand a Wannier function on a basis of
symmetry adapted gaussian-type orbitals (SAGTOs). Notably, they apply their method to the case of wz.
For simplicity, they use a restricted set of SAGTOs and mention that more elaborate strategies should be
adopted in future works. In the second part of this chapter, we apply the method of [Bak+18] to wz with
a larger set of SAGTOs, in order to use the compressed wz in large tight-binding computations on TBG.
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Figure 5.4 – Representation of wz, a maximally localized Wannier function corresponding to a pz-like
valence band of monolayer graphene. The plot is a level set where the colors represent the sign of the
function. It also shows in brown a small sample of monolayer graphene. The data has been generated
with DFTK [HLC21] and visualized with VESTA [MI08].

After briefly describing the compression method in the general case, we derive the expression of a
basis of SAGTOs (φSA

i )16i6n for wz and compute in Fourier space the orthogonal projection of wz on
(φSA
i )16i6n for the Hs(R3;C) canonical inner products, s ∈ N. In Section 5.4.2, we present our preliminary

results and discuss some perspectives.

5.4.1 Compression of wz on symmetry adapted GTO basis
5.4.1.1 Overview of the general compression method

Let us start by a brief overview of the compression method introduced for a general crystalline system in
[Bak+18]. For a given s ∈ N, the authors consider a Wannier function w ∈ Hs(R3;C) with symmetry
point group G, and a set B of localized symmetry-adapted functions in the sense that

∀φSA ∈ B, ∀g ∈ G, g · φSA := φSA ◦ g−1 = φSA. (5.4.1)

The compression method reads as the following two-step greedy procedure: given current iterate and
residual

wn−1 =
n−1∑
i=1

[Cn−1]iφSA
i and rn−1 = ‖w − wn−1‖2

Hs (5.4.2)

where Cn−1 ∈ Rn−1, n ∈ N∗,

1. choose the next function φSA
n ∈ B that best approximates the residual rn

φSA
n ∈ argmin

{∥∥rn − φSA
∥∥2
Hs |φSA ∈ B

}
; (5.4.3)

2. compute wn as the Hs-orthogonal projection on the basis (φSA
i )16i6n by solving the least square

problem

wn :=
n∑
i=1

[Cn]iφSA
i , where Cn ∈ argmin


∥∥∥∥∥w −

n∑
i=1

[C]iφSA
i

∥∥∥∥∥
2

Hs

∣∣∣∣C ∈ Rn
 . (5.4.4)

A solution to (5.4.4) is quickly obtained by first expanding the squared-norm in (5.4.4) as

‖w‖2
Hs − 2

n∑
i=1

ci〈w|φSA
i 〉Hs +

n∑
i,j=1

cicj〈φSA
i |φSA

j 〉Hs =: ‖w‖2
Hs − 2CTX + CTSC (5.4.5)
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where we introduced the notation

X := [〈w|φSA
i 〉Hs ]16i6n ∈ Cn and S := [〈φSA

i |φSA
j 〉Hs ]16i,j6n ∈ Cn×n. (5.4.6)

A straightforward computation of the gradient of this expression with respect to C provides the set of
optimal coefficients CTn = S−1X. We conclude that

wn =
n∑
i=1

[XTS−1]iφSA
i . (5.4.7)

We emphasize that the original presentation of the compression method is more general. We refer to
[Bak+18] for further details.

5.4.1.2 Symmetries of wz
Let us now identify the symmetry point group of wz. For the sake of simplicity, we suppose that wz is
centered at the origin of R3. Using the notations of Section 5.2.1, we observe that

• wz is odd in the out-of-plane direction

S (wz) = −wz; (5.4.8)

• in the monolayer graphene plane, wz is invariant by rotations of angle n 2π
3 (n ∈ Z) around the

z-axis, and by reflections with respect to the vertical planes containing the covalent bonds with the
carbon atom at the origin. Let D3 be the symmetry group of the equilateral triangle, generated by
the symmetry s1(x, y) = (−x, y) and the rotation R 2π

3
around the z-axis. Then wz is D3-invariant

in the sense that

∀u ∈ D3 u · wz(x, z) = wz(u−1(x), z) = wz(x, z). (5.4.9)

This implies that wz belongs to the A′′
2 irreducible representation of the D3h group 1.

5.4.1.3 Construction of a symmetry-adapted basis

As in [Bak+18], we begin by defining a reference set of Cartesian gaussian-polynomial functions

B(0) =
{
φ : r ∈ R3 7→ p(r − R)e−ζ|r−R|2

| p ∈ R3[X], R ∈ R3, ζ ∈ R∗
+

}
(5.4.10)

where R3[X] denotes the polynomial functions of R3. We now wish to identify the A′′
2 -symmetric functions

of B(0), i.e. the GTOs φ ∈ B(0) that verify

(1) S (φ) = −φ and (2) u · φ = φ for all u ∈ D3. (5.4.11)

It is easily seen that the two conditions are met for all centered GTOs of the form

φ(x, z) =
∑
j∈N

∑
p∈I(D3)

λjpp(x)z2j+1e−ζ|r|2
, λjp ∈ R, (5.4.12)

where I(D3) denotes all polynomials of R2[X] that are A′′
2 -symmetric. To identify I(D3), we remark that

by linearity of the action of D3 on 2D polynomials

I(D3) =
⊕
n∈N

In(D3) (5.4.13)

1See http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=603&option=4
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where In(D3) are the homogeneous polynomials of degree n in I(D3), and we proceed by increasing
order n. For n 6 2 a quick computation shows that

I0(D3) = Span{1}, I1(D3) = {0} and I2(D3) = Span{(x2
1 + x2

2)}. (5.4.14)

For n > 2, we use polar coordinates and decompose pn ∈ In(D3) as

pn(x1 = r cos(θ), x2 = r sin(θ)) = q

(√
x2

1 + x2
2

) ∑
|m|6n

cme
imθ = q

(√
x2

1 + x2
2

) ∑
06m6n3

dm cos(3mθ)

(5.4.15)
where q ∈ R[X], and where cm and dm are complex numbers. The last equality comes from the fact that
pn verifies (5.4.11). Finally the equality

cos(mθ) = Re
(

m∑
k=0

ik sink(θ) cosm−k(θ)
)

(5.4.16)

and the identification x1 = r cos(θ), x2 = r sin(θ) allows one to identify the polynomials in In(D3). The
A′′

2 -symmetric homogeneous polynomials are shown in Table 5.2 up to degree nx = 9. Using (5.4.12),

degree nx D3-invariant homogeneous polynomial
0 1
2 x1

2 + x2
2

3 x1
3 − 3x1x2

2

4 x1
4 + 2x1

2x2
2 + x2

4

6 x1
6 − 15x1

4x2
2 + 15x1

2x2
4 − x2

6

9 x1
9 − 36x1

7x2
2 + 126x1

5x2
4 − 84x1

3x2
6 + 9x1x2

8

Table 5.2 – Two dimensional homogeneous D3-symmetric polynomials of up to order 9.

(5.4.13) and Table 5.2, and for given maximum orders nx and nz, we construct the set Bnx,nz ⊂ B(0) of
A′′

2 -symmetric SAGTOs

Bnx,nz
=

φ(x, z) =
nz∑
j=0

pnx(x)z2j+1e−ζ|r|2
, pnx ∈

nx⊕
n=0

In(D3), ζ ∈ R∗
+,

 . (5.4.17)

To ease convergence, it proves advantageous to construct some SAGTOs by selecting a given φCC ∈ B2,nz

with center anywhere on a carbon-carbon bond, and to set

φ = φCC + R 2π
3
φCC + R 4π

3
φCC (5.4.18)

which is indeed A′′
2 -symmetric. In practice, we proceed in an alternate fashion, by selecting φ as in (5.4.17)

or as in (5.4.18).

5.4.1.4 Computation of wz
As recalled in Section 4, wz is defined as the inverse Bloch transform of a set of Bloch waves {uk},
corresponding to the pz-like band of monolayer graphene:

wz(x, z) =
 

Ω∗
uk(x, z)eik·xdk. (5.4.19)

It therefore remains to generate the Bloch waves {uk} using a wannierization procedure. To do so we follow
the Marzari-Vanderbilt (MV) [MV97] wannierization method, as described in the introductory Section 4.

1. First we obtain an initial set of Bloch waves and energy bands (u(0)
n,k, ε

(0)
n,k)16n6N,k∈Ω∗ for monolayer

graphene, by a Kohn-Sham PW-DFT calculation.
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2. Then we find an optimal gauge {U(k)} that minimizes the MV functional ΩMV.

3. Finally we set un,k =
N∑
m=1

u
(0)
m,kUm,n(k), identify the n-th band corresponding to a pz-valence band

of graphene and set uk = un,k.

The MV functional ΩMV is minimized by a direct minimization procedure, using a finite-difference ap-
proximation on a k-point sampling of Ω∗. As detailed in [Mar+12; W90], this procedure only requires the
initial data of a family of small N ×N matrices

M (0)
mn(k,b) = 〈u(0)

m,k|u(0)
n,k+b〉L2

per(Ω) and A(0)
mn(k) = 〈umke

ik·r|gn〉L2 . (5.4.20)

The vectors b connect a given k-point from the finite-difference grid with its neighbors, and are selected
depending on the chosen finite-difference scheme and symmetries. The matrices A(0)

mn allow to compute the
projection of the Bloch states ψnk(r) = unk(r)eik·r on initial trial localized orbitals (gn) ∈ (L2(R3;C))N .
The matrix elements of (5.4.20) are easily computed in Fourier space after introducing a discretization
basis set, as in the following section. For some vectors b, the point k + b is out of the Brillouin zone. In
that case we use the fact that

un,(k+b)(x, z) = e−ib·xun,k(x, z). (5.4.21)

5.4.1.5 Discretization in a plane-wave basis

In order to evaluate the inner products in (5.4.6) and (5.4.20), we proceed as in the previous section and
introduce a truncation of the out-of-plane direction with boundary conditions. For a given height h � 1,
let

Rh = Rx + hZ (5.4.22)

with unit cell Ωh and suppose that the Bloch waves are Rh-periodic. We then approximate the continuous
Brillouin zone Ω∗

h using the three-dimensional Monkhorts-Pack grid

Ω∗
h ' Ω∗

h,L :=
{

k = j1

n1
a∗

1 + j2

n2
a∗

2, j1, j2 ∈ {0, . . . , L− 1}
}

⊕ {0} (5.4.23)

composed of a regular 2D sampling of size L2 (L ∈ N∗) in the in-plane direction and of a single point at
the origin in the out-of-plane direction. For all k ∈ Ω∗

h,L, let us decompose uk in Fourier series

uk(r) = 1
L

∑
G∈R∗

h

u[G]eiG·r. (5.4.24)

In that framework, (5.4.19) discretizes as

wz(x, z) =
 

Ω∗
uk(x, z)eik·xdk ' 1

L3

∑
k∈Ω∗

h,L

∑
G∈R∗

h

uk[G]ei(k+G)·r. (5.4.25)

An immediate consequence of discretization, as appearing in (5.4.25), is that wz becomes periodic of
the lattice Rh,L = LRx + hZ. In other words, the symmetry group of the discrete wz is the space group

D3h n Rh,L. (5.4.26)

We therefore have to adapt the construction of SAGTOs of the previous section to the discrete setting by
considering

Bnx,nz
(h,L) =

φSA =
∑

R∈Rh,L

φ(· − R), φ ∈ Bnx,nz

 . (5.4.27)

To avoid any confusion, we call Rh,L the supercell lattice and adopt the following conventions:

• q denotes a point of the reciprocal supercell lattice R∗
h,L (the plane-wave discretization basis for

wz);
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(1/L)a∗
1

Ω∗
h,L (Fourier space) Ωh,L ( Real space)

(L/2π)a1

Ωh

Figure 5.5 – (Left) Monkhorst-Pack discretization of the reciprocal unit cell Ω∗
h,L as a L × L × 1 grid.

(Right) The corresponding Wannier function, pictured as a standard pz atomic orbital, is periodic of a
supercell made of L2 monolayer graphene unit cells Ωh. We omitted the periodicity in the out-of-plane
direction for readability.

• k denotes a point of the sampled reciprocal supercell Ω∗
h,L;

• G denotes a point of the truncated (with standard cell) lattice R∗
h (corresponding to the plane-wave

discretization of the monolayer graphene Bloch waves un,k).

Note that for all k ∈ Ω∗
h,L and G ∈ Rh, q := k + G ∈ R∗

h,L.

For all φSA ∈ Bnx,nz
(h,L), we write

∀r ∈ R3 wz(r) ' 1
L

∑
q∈R∗

L,h

wz[q]eiq·r, φSA(r) ' 1
L

∑
q∈R∗

L,h

φSA[q]eiq·r. (5.4.28)

The last step is to compute explicitly the Fourier coefficients wz[q] and φSA[q]. For all basis function
φSA ∈ Bnx,nz (h,L) and quasi-momentum q ∈ R∗

L,h, we first remark that

φSA[q] =
 

ΩL,h

φSA(r)e−iq·rdr =
∑

R∈RL,h

 
ΩL,h

φ(r − R)e−iq·rdr = F(φSA)(q). (5.4.29)

Let us write φSA(r) =
∑nz

j=1 pnx(r)z2j+1gζ(r) with gz(r) := e−ζ|r|2 and λ1, . . . , λnx ∈ R be such that

pnx =
nx∑
n=1

λnpn, pn ∈ In(D3), ∀n ∈ {1, . . . , nx}. (5.4.30)

The Fourier transform F(φSA) can be computed using Fourier duality as

F(φSA) =

 nz∑
j=1

nx∑
n=1

λn(−i)n+2j+1p(∂x)∂2j+1
z

F(gζ). (5.4.31)

Since F(gζ) is known, (5.4.31) can be computed analytically, although deriving (5.4.31) by hand is very
cumbersome for high degrees nx and nz. In practice, we obtain F(φSA) by applying forward automatic

162



differentiation [RLP16] iteratively, using the chain rule, which brings no additional numerical errors. When
it comes to wz, we simply identify in (5.4.25) with our discretization conventions

wz[k + G] = uk[G]
L2 , ∀(k + G) ∈ R∗

L,h. (5.4.32)

Finally if wn =
n∑
i=1

φSA
i is the current iterate, then equations (5.4.31) and (5.4.32) yield for all

1 6 i, j 6 n

Xi = 1
L
√

|Ωh|

∑
q=(k+G)∈R∗

L,h

(1 + |q|2)suk[G]F(φSA
i )(q)

Sij =
∑

q∈R∗
L,h

(1 + |q|2)sF(φSA
i )(q)F(φSA

j )(q).
(5.4.33)

5.4.2 Numerical results
We start this numerical section by giving some implementations details. More information can be found
in our code freely available at https://github.com/LaurentVidal95/Wannier2GTO.

5.4.2.1 Implementation details

Monolayer self-consistent field computation. For given parameters h and L, we use DFTK to produce
a set of N = 15 Bloch waves and energy bands (u(0)

n,k, ε
(0)
n,k), using a KS-DFT method with Perdew-

Burke-Ernzerhof (PBE) functional [PBE96] and Hartwigsen-Goedecker-Teter-Hutter separable dual-space
Gaussian pseudopotentials [HGH98]. The parameter h is set to match the value of [Bak+18, Table 2]. The
k-fiber eigenvalue problems are solved using k-dependent Fourier discretization basis sets (as presented in
Section 4) defined by a cut-off parameter Ec. The cut-off energy Ec and sampling precision L are set by
a convergence analysis with respect to wz. The value Ec = 50 Ha and L = 8 provide stable results within
a range of 1% in the H1-norm of wz.

Wannierization. To obtain the MLWFs of the valence band of graphene, we originally interfaced DFTK
with Wannier90 [Piz+20], a commonly used software that implements the MV wannierization procedure.
The interface works by generating two input files for Wannier90 and by parsing and integrating the output
data in DFTK: the first input file contains the geometry and convergence parameters needed to generate a
list of b vectors; the second input files contains values of the matrix elements (5.4.20) (computed in DFTK)
and produces the optimal gauge {U(k)}. The whole procedure has been integrated in DFTK.

Parts of this work were later used to integrate the wannierization package Wannier.jl [Qia], fully
written in Julia language, in DFTK.

5.4.2.2 Preliminary results

We implemented the compression routine as described above in a Julia proof-of-concept code. By setting
nx = 5 and nz = 5, we managed to construct a basis ΦSA ∈ B5,5(h,L)10 of 10 basis functions, depending
on 155 parameters, such that the H1-projection ΠΦSA(wz) of wz on ΦSA verifies

‖wz − ΠΦSA(wz)‖H1 ' 0.12 . (5.4.34)

In the original paper [Bak+18], the same precision is obtained for at least twice the number of parameters.
Note that this choice of parameter nx and nz produced the best performance.

Unfortunately, adding more basis functions to ΦSA resulted in the conditioning of the overlap matrix S
to blow-up. This main limitation of our proof-of-concept code, which hindered the compression procedure,
can be remedied for example by minimizing the condition number of S in the compression procedure, or
by applying other standard methods to cure ill-conditioned basis sets. However, this aspect remains
unexplored and is left for future investigation.
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5.4.2.3 Perspectives

As we lacked the time to complete this study, the potential path for further explorations are numerous.
Regarding the compression procedure, our initial results suggest that using a larger set of SAGTOs than in
[Bak+18] allows to achieve the same precision with a smaller basis set. However, our naive implementation
resulted in ill-conditioned SAGTOs, preventing further investigation into the use of larger and potentially
more accurate basis sets. Our first task should therefore be devoted to address the bad conditioning
inherent to the construction of SAGTOs within our implementation.

Our objective in obtaining a compressed version of wz is to speed-up the computation of tight-binding
elements for large-scale calculations in TBG. Presently, our code is interfaced with the GaIn [Duc] C++
library developed by Ivan Duchemin, which handles analytical integrals involving GTOs and Hamiltonian
terms. In a future work, we should evaluate the time saved by using analytical integrals compared to
standard quadrature methods, and quantify the impact of compression on the accuracy in the calculation
of tight-binding matrix elements.
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