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Abstract In this chapter, we propose a simple geometrical derivation of the restricted open-shell
Hartree-Fock (ROHF) equations in the density matrix and molecular orbitals formalism. We then in-
troduce a new, parameter-free, basic fixed-point method to solve these equations, that, in contrast with
existing self-consistent field (SCF) schemes, is not based on the introduction of a non-physical, parameter-
dependent, composite Hamiltonian. We also extend the Optimal Damping Algorithm to the ROHF
framework. We finally present numerical results on challenging systems (complexes with transition met-
als) demonstrating the performance of the new algorithms we propose.
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2.1 Introduction

The ultimate goal of computational chemistry is to propose reliable theoretical tools to describe the chem-
ical properties of any molecular system. The initial step of such a task is always the accurate description
of the ground state electronic structure of the system, for which there exist essentially two flavors of ap-
proaches: the wave function theory (WFT) and density functional theory (DFT). Although DFT remains
certainly the most used theoretical tool for closed-shell systems because of its advantageous ratio between
the computational cost and the accuracy of the results, the usual semi-local approximations used in DFT
are known to suffer from several issues when open-shell systems need to be considered. For instance,
the self-interaction error in open-shell systems is responsible for the over delocalization of electrons in
transition metal complexes and has impacts on several chemical properties such as the electronic param-
agnetic spectrum, ligand-field excitations or spin-gaps [Rui+98; SMS02; ARS+05; KKN07; Ata+06]. One
major issue in DFT is that there is no systematic way to improve the results, which leads to an inflation
of different flavors of approximated functionals tailored for a specific class of systems and/or properties
[VT20]. The situation of WFT is somehow opposite as there exists many ways of systematically refine
the results starting from a mean-field description although it comes to the price of a rapidly growing
computational cost. Nevertheless, as remarkable progresses have been obtained in the reduction of the
computational cost of correlated WFT methods (see for instance Ref [MW20] and references therein),
the latter appear more and more as actual computational tools for the treatment of open-shell systems.
Even though WFT-based correlated methods are in active development, they all start with a mean-field
Hartree Fock (HF) calculation for which there are many convergence problems in the context of open-shell
systems. Therefore, improving the reliability of the HF algorithms becomes an important point in order
to popularize the correlated WFT methods.

There exists several avatars of the Hartree-Fock method. The most commonly used are the restricted
and unrestricted Hartree-Fock methods (RHF and UHF, respectively), which differ by the constraint im-
posed in the RHF method to have an unique set of spatial orbitals for both up and down spins. For
open-shell systems, the constraint of having the same spatial orbitals for the two spins has an important
consequence: while the ROHF Slater determinant is an eigenfunction of the Ŝ2 operator, the UHF Slater
determinant suffers from spin contamination [TS10]. The latter has a big impact in the post-HF calcula-
tions as the correlated wave function built upon a spin-contaminated Slater determinant needs to restore
the correct spin symmetry using high-order particle-hole excitations [Boo+13; TS10; DVHG02]. More-
over, the correlated methods using unrestricted orbitals necessary deal with several types of two-electron
integrals corresponding to the interaction between electrons of different spins, which also induces several
complications in the code structure and memory.

From the mathematical point of view, Hartree-Fock methods give rise to constrained optimization
problems, whose first-order optimality conditions are the Hartree-Fock equations. As usual in optimization
theory, numerical solutions can be obtained either by solving the Hartree-Fock equations by a fixed-point
(self-consistent field - SCF) algorithm, or by a direct minimization of the Hartree-Fock energy functional
[DVHG02; VHG02; CKL21].

Many algorithms have been developed for the RHF and UHF frameworks in the past 70 years.
Roothaan’s [Roo51], level-shifting [SH73], and DIIS algorithms [Pul80; Pul82; HP86; RS11; Chu+21]
belong to the class of SCF algorithms. Direct minimization approaches are adopted in e.g. Bacskay’s
quadradic convergent algorithm [Bac81], trust-region methods [Thø+04] and geometric direct minimiza-
tion (GDM) methods [DVHG02; VHG02]. Let us also mention the second-order SCF (SOSCF) algorithm
[CSG97; Nee00], and the DIIS-GDM [DVHG02; VHG02], which combine features from both SCF and
direct minimization methods.The optimal damping algorithm (ODA) [CB00] and the EDIIS algorithm
[KSC02] solve a relaxed version of the Hartree-Fock optimization problem, whose solutions always coin-
cide with those of the original Hartree-Fock problem for UHF, as well as for the less popular General
Hartree-Fock method (GHF) in which each spin-orbital is allowed to have both a spin-up and a spin-down
component. For RHF, ODA and EDIIS most often converge to solutions to the RHF problem, but may
occasionally converge to one-body density matrices with fractional occupation numbers, which do not
correspond to Hartree-Fock states. A robust and efficient method to solve the RHF and UHF problems
(which always works for UHF and most of the time for RHF) is to use EDIIS in the first iterations and
switch to DIIS to accelerate convergence when the iterates are close enough to the solution [KSC02].
All the above algorithms are relatively well-understood from a mathematical point of view [Can+03].
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Roughly speaking, computing RHF and UHF ground states for small and medium-size chemical systems
is no longer an issue.

The situation is radically different for ROHF, where existing SCF algorithms fail to converge in many
cases, notably for radicals and molecular systems containing transition metals.

In this article, we investigate the SCF algorithms for ROHF. We focus on maximum spin states in
order to simplify the presentation, but our approach is valid for any spin state (see Remark 2.2.1). In
Section 2.2, we recall the mathematical structure of the ROHF ground state problem in both the density
matrix and molecular orbital formalisms. In particular, we point out that the ROHF minimization space
has the geometry of a flag manifold, a structure that has been described in the mathematical literature
(see e.g. [Lee13; YWL22]). Using this formalism, we derive from a geometric perspective the first-order
optimality conditions for the ROHF problem, the ROHF equations.

In contrast with the RHF and UHF settings, the ROHF equations cannot be naturally formulated as
a nonlinear eigenvalue problem. As a consequence, the simple SCF Roothaan scheme for RHF, “assemble
the Fock matrix for the current iterate, diagonalize it, build the next iterate using the Aufbau principle,
that is by selecting the lowest energy orbitals”, cannot be straightforwardly extended to the ROHF setting.
All the existing SCF algorithms we are aware of twist the ROHF equations using coupling operators to
transform them into a nonlinear eigenvalue problem. They are based on the construction of a composite,
non-physical, effective Hamiltonian obtained by linear combinations of sub-blocks of the Fock matrices Fd
and Fs respectively associated to the doubly and singly ROHF orbitals (also refereed to as internal and
active orbitals). These combinations involve six real coefficients Att, and Btt with t equal to d (doubly
occupied), s (singly occupied), or v (virtual), the choice of which characterizes the SCF scheme. For
instance, these six coefficients are all equal to 1/2 in the Guest and Saunders algorithm [GS74], but
are different and depend on the spin state in the Canonical-I and Canonical-II algorithms introduced by
Plakhutin and Davidson [PD14]. From the physical point of view, the choice of Att and Btt coefficients
essentially tries to maintain the Aufbau principle in order to avoid numerical instabilities of the SCF
algorithm induced by swapping of the singly occupied orbital with doubly occupied or virtual orbitals.
It is important to stress that, because of the mathematical restriction imposed by the ROHF Slater
determinant, the Aufbau principle, inspired by the Koopman theorem, is not guaranteed, and therefore a
choice of Att and Btt which might work for a given system might break down for another, as illustrated
for instance in the numerical results reported here (see Section 2.4.2).

In Section 2.3, we present a new SCF scheme, which better respects the essence of the ROHF equations
and which is parameter-free. We then briefly describe how the DIIS acceleration algorithms write on
the flag manifold of ROHF states. In Section 2.3.2.1, we extend the ODA to the ROHF setting. In
Section 2.4, we compare the performance of the new algorithms introduced in this article to the state-
of-the-art SCF algorithms for some challenging chemical systems, such as organic ligands chelating – or
simply interacting with – transition metals. Although computationally demanding in their current state,
our new algorithms showcase robust convergence properties, and give new perspective on the design of
black-box SCF algorithms for open-shell systems.

2.2 The ROHF optimization problem
In this section, we first present the ROHF model in density matrices (DM) and molecular orbitals (MO)
formalisms (without virtual orbitals). We then introduce the manifold of ROHF states. This manifold has
a rich geometrical structure, known as a flag manifold. Although they are equivalent, each formalism DM
or MO produces a specific discretization of the flag manifold of ROHF states, the ROHF energy gradient
and optimality conditions, each one providing some insight on the ROHF problem.

2.2.1 The ROHF model
In ROHF theory, trial wavefunctions Ψ are not, in general, single Slater determinants, but configuration
state functions (CSFs) [PD14; HJO14]. The latter are eigenfunctions of the spin operators Ŝ2 and Ŝz and
of the number operators n̂i = a†

i↑ai↑ + a†
i↓ai↓, for a given orthonormal basis of orbitals (ϕ1, ϕ2, · · · ) of

L2(R3;C):
Ŝ2Ψ = s(s+ 1)Ψ, ŜzΨ = msΨ, n̂iΨ = niΨ,
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for given s ∈ 1
2N, ms ∈ {−s,−s + 1, · · · , s − 1, s}, and ni ∈ {0, 1, 2}. Up to reordering the orbitals, we

can assume that
ni = 2 ∀i = 1, · · · , Nd,
ni = 1 ∀i = Nd + 1, · · · , Nd +Ns,

ni = 0 ∀i > Nd +Ns.

Then, Ψ is a finite sum of Slater determinants, each of them made of the Nd doubly occupied orbitals
ϕ1, · · · , ϕNd

and Ns spin-orbitals of the form ϕNd+1 ⊗ η1, · · · , ϕNd+Ns
⊗ ηNs

, the function ηj being equal
to either α (spin-up) or β (spin-down). The numbers Nd, Ns, N (number of electrons in the system), s,
and ms are such that

2Nd +Ns = N, |ms| ≤ s ≤ 1
2Ns.

We also denote by No := Nd +Ns the number of (singly or doubly) occupied orbitals.

For maximum spin states (s = 1
2Ns) and maximum ms value (ms = s), ROHF trial wavefunctions are

single Slater determinants built with Nd doubly occupied orbitals ϕ1, · · · , ϕNd
and Ns spin-up-orbitals

ϕNd+1 ⊗ α, · · · , ϕNo
⊗ α, where the ϕi’s satisfy 〈ϕi|ϕj〉 = δij for all 1 ≤ i, j ≤ No. The electronic

Hamiltonian

HN = −1
2

N∑
i=1

∆ri
+

N∑
i=1

Vnuc(ri) +
∑

1≤i<j≤N

1
|ri − rj |

being real-valued in the absence of external magnetic field and spin-orbit coupling, we can assume without
loss of generality that the orbitals ϕi are real-valued. In order to obtain a computationally tractable model,
the ϕi’s are expanded in a finite basis set X := (χ1, · · · , χNb

) of real-valued functions of the space variable:

ϕi(r) =
Nb∑
µ=1

[Co]µiχµ(r).

In practice, the χµ’s are non-orthogonal atomic orbitals (AO). In order to simplify the presentation, we
will however assume here that the basis X is orthonormal, or equivalently that the overlap matrix is the
identity matrix:

Sµν :=
ˆ
R3
χµ(r)χν(r) dr = δµν .

Let us emphasize that we make this simplification for pedagogical purposes only; extending our arguments
to non-orthogonal basis sets is a simple exercise. In that setting, the orthonormality constraints on the
orbitals imply that Co is a rectangular orthogonal matrix; in other words, a point of the Stiefel manifold

Co ∈ St(No;RNb) := {Co ∈ RNb×No s.t. CTo Co = INo
} (2.2.1)

where INo
denotes the identity matrix of rank No. In the following, it will be helpful to decompose Co as

two orthogonal matrices

Co = (Cd|Cs) with Cd ∈ RNb×Nd and Cs ∈ RNb×Ns (2.2.2)

corresponding to the coefficients of the doubly and singly occupied orbitals respectively.

From Co, one can construct the density matrices (DM) Pd and Ps

Pd := CdC
T
d and Ps := CsC

T
s . (2.2.3)

The matrices Pd and Ps are the basis representations of the orthogonal projectors on the spaces spanned
by the doubly and singly occupied orbitals respectively. Recall that a square matrix P is an orthogonal
projector if P 2 = P = PT , and that its rank is the integer tr(P ). These matrices represent the one-body
density matrices (projectors)

γd =
Nd∑
i=1

|ϕi〉〈ϕi| and γs =
No∑

i=Nd+1
|ϕi〉〈ϕi| (2.2.4)
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in the basis set X :

γd =
Nb∑

µ,ν=1
[Pd]µν |χµ〉〈χν | and γs =

Nb∑
µ,ν=1

[Ps]µν |χµ〉〈χν |.

We have the following equivalences:

〈ϕi|ϕj〉 = δij for all 1 ≤ i, j ≤ No ⇔ CTd Cd = INd
, CTs Cs = INs

, CTd Cs = 0 (2.2.5)

⇔


P 2
d = Pd = PTd , tr(Pd) = Nd,

P 2
s = Ps = PTs , tr(Ps) = Ns,

PdPs = 0.
(2.2.6)

The maximum spin ROHF wavefunction Ψ generated by orthonormal doubly orbitals (ϕ1, · · · , ϕNb
)

and singly occupied orbitals (ϕNd+1, · · · , ϕNo) is completely determined (up to an irrelevant global phase)
by the one-body density matrices γd and γs defined by (2.2.4). Conversely any pair (γd, γs) of orthogonal
projectors satisfying tr(γd) = Nd, tr(γs) = Ns, and γdγs = 0 gives rise to a unique ROHF wavefunction
ΨROHF
γd,γs

of maximal spin (up to a global phase), whose energy is a function of (γd, γs):

EROHF(γd, γs) := 〈ΨROHF
γd,γs

|HN |ΨROHF
γd,γs

〉.

After discretization in the finite basis set X , the ROHF energy functional becomes a function of the
matrices Pd and Ps representing γd and γs in this basis:

E(Pd, Ps) := EROHF

(
Nb∑

µ,ν=1
[Pd]µν |χµ〉〈χν |,

Nb∑
µ,ν=1

[Ps]µν |χµ〉〈χν |

)
.

Standard algebraic manipulations lead to

E(Pd, Ps) = tr (h(2Pd + Ps)) + tr ((2J(Pd) −K(Pd))(Pd + Ps))

+ 1
2 tr ((J(Ps) −K(Ps))Ps) ,

(2.2.7)

where
[h]µν = 1

2

ˆ
R3

∇χµ(r) · ∇χν(r) dr +
ˆ
R3
Vnuc(r)χµ(r)χν(r) dr,

[J(P )]µν =
Nb∑

κ,λ=1
(µν|κλ)Pκλ, [K(P )]µν =

Nb∑
κ,λ=1

(µκ|νλ)Pκλ,

and
(µν|κλ) :=

ˆ
R3

ˆ
R3

χµ(r)χν(r)χκ(r′)χλ(r′)
|r − r′|

dr dr′.

In the following, we will use the fact that the matrix h ∈ RNb×Nb
sym is symmetric, and that the functions

J,K : RNb×Nb
sym → RNb×Nb

sym are linear and such that

tr(J(P )P ′) = tr(J(P ′)P ), tr(K(P )P ′) = tr(K(P ′)P ) for all P, P ′ ∈ RNb×Nb
sym . (2.2.8)

Note that the trace of Pd is equal to Nd, the number of doubly-occupied orbitals. The fact that each
of these orbitals hosts two electrons is taken into account by the factors 2 in the first two terms of the
right-hand side of Eq. (2.2.7). In view of (2.2.6), the density matrix (DM) formulation of the ROHF
ground state problem in the basis X reads

EROHF
∗ := min{E(Pd, Ps), (Pd, Ps) ∈ MDM(Nd, Ns;RNb)}, (2.2.9)

where

MDM(Nd, Ns;RNb) :=
{

(Pd, Ps) ∈ RNb×Nb
sym × RNb×Nb

sym | P 2
d = Pd, P

2
s = Ps, PdPs = 0,

tr(Pd) = Nd, tr(Ps) = Ns

}
. (2.2.10)

The set MDM is the set of admissible pairs of doubly and singly occupied density matrices, that are the
pairs of matrices actually representing a maximum spin ROHF state in the basis X .
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Remark 2.2.1. The optimization problem (2.2.9) corresponds to the ROHF model for maximum spin states
(|ms| = s = 1

2Ns). For other spin states (|ms| ≤ s < 1
2Ns), the ROHF problem still is of the form (2.2.9).

The energy functional E has a different expression (due to the Fock exchange term coupling only spin-
orbitals having the same spin), but remains a sum of linear and bilinear forms in (Pd, Ps). See e.g. ref.
[HJO14] for the derivation of the non-maximal spin energy expressions using the genealogical coupling
scheme. Note that the algorithms presented in this article, although formulated for maximum spin state
case, can therefore be straightforwardly extended to any spin state.

The ROHF energy in MO formalism can be deduced from (2.2.3) and (2.2.7), for all Co ∈ St(No,RNb)

E(Co) = E(CdCTd , CsCTs ). (2.2.11)

An important difference between the DM and MO formalisms is that an ROHF state is represented by
one and only one point of (Pd, Ps) ∈ MDM(Nd, Ns;RNb) (more precisely, the manifold of ROHF states
is diffeomorphic to MDM(Nd, Ns;RNb)), while it is represented by an infinity of points in St(No;RNb),
namely the points in the set{

Co

(
Ud 0
0 Us

)
= (CdUd|CsUs), where (Ud, Us) ∈ ONd

× ONs

}
⊂ St(No,RNb). (2.2.12)

where we denoted ON = {U ∈ RN×N s.t. UTU = IN} the orthogonal group of N ×N matrices.
One way to recover the unicity of representation of ROHF states in MO formalism relies on the abstract

notion of quotient sets. We introduce the equivalence relation on St(No;RNb) defined by

Co ∼ C ′
o ⇔ ∃(Ud, Us) ∈ ONd

× ONs
such that C ′

o = Co

(
Ud 0
0 Us

)
, (2.2.13)

such that the set (2.2.12) is an equivalence class for the equivalence relation (2.2.13). Then the set of all
equivalence classes (2.2.12), defined as the quotient

MMO(Nd, Ns;RNb) := St(No;RNb)/ ∼= St(No;RNb)/(ONd
× ONs

) (2.2.14)

is diffeomorphic to both MDM(Nd, Ns;RNb) and the set of ROHF states. In particular, a ROHF state is
represented by one and only one element of MMO(Nd, Ns;RNb). Let us clarify the meaning of this property.
An element of the quotient MMO(Nd, Ns;RNb) is by definition an equivalence class (2.2.13). It can there-

fore be represented by some Co ∈ St(No;RNb) or by any C ′
o = Co

(
Ud 0
0 Us

)
, for (Ud, Us) ∈ ONd

×ONs .

Denoting JCoK the equivalence class containing Co, (JCoK ∈ MMO(Nd, Ns;RNb)), we have

JCoK = JCo
(
Ud 0
0 Us

)
K, ∀(Ud, Us) ∈ ONd

× ONs
.

In addition E(Co) = E(Co
(
Ud 0
0 Us

)
) (i.e. all Co ∈ St(No;RNb) in the same equivalence class have the

same ROHF energy), so that E can be seen as a function from MMO(Nd, Ns;RNb) to R, also denoted E
for simplicity. We can therefore write the ROHF minimization problem in MO formalism as

EROHF
∗ := min{E(JCoK), JCoK ∈ MMO(Nd, Ns;RNb)}. (2.2.15)

The quotient nature of MMO(Nd, Ns;RNb) is not a mere theoretical tool, but is crucial to build efficient
implementations of optimization algorithms in MO representation. Yet, taking into account this specificity
of MO formalism would require to introduce additional mathematical objects, which could obscure the
main subject of our discussion. For that reason, we will mainly focus in the following on the DM formalism,
for which MDM(Nd, Ns;RNb) can be seen as a simple subset of RNb×Nb

sym ×RNb×Nb
sym . Additionally, the ROHF

energy functional has a simple form in DM representation, which makes the DM formalism well-suited for
methodological developments.

From a mathematical point of view, MDM(Nd, Ns;RNb) and MMO(Nd, Ns;RNb) are smooth (i.e.
infinitely differentiable, C∞) compact manifolds. While the DM and MO parametrizations of ROHF
states seem quite different, they are in fact two representations of a same geometric object, as we now
discuss bellow.
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2.2.2 The manifold of ROHF states
The purpose of this section is to give some insights on the manifolds of ROHF states MDM(Nd, Ns;RNb)
and MMO(Nd, Ns;RNb). In order to simplify the notations, we will abbreviate the DM and MO sets as
MDM and MMO, and denote by x the points in MDM and JyK the points in MMO.

Let us start with a point x = (Pd, Ps) ∈ MDM. Since Pd is a rank-Nd orthogonal projector (i.e. a
symmetric matrix fulfilling P 2

d = Pd and Tr(Pd) = Nd), it can be diagonalized in an orthonormal basis
of RNb and its only eigenvalues are 1 (multiplicity Nd) and 0 (multiplicity Ns + Nv). Likewise, Ps is a
rank-Ns orthogonal projector. In addition, as PdPs = 0, we also have PsPd = (PdPs)T = 0, which implies
that Pd and Ps commute and can therefore be co-diagonalized in the same orthonormal basis. Introducing
the projector

Pv := INb
− Pd − Ps

on the virtual space (the space spanned by the virtual orbitals), which satisfies P 2
v = Pv = PTv , tr(Pv) = Nv,

and PdPv = PsPv = 0, we obtain that there exists a unitary matrix C ∈ ONb
such that

Pd = CIdCT , Ps = CIsCT , Pv = CIvCT , CCT = INb
, (2.2.16)

where

INd
=

 INd
0 0

0 0 0
0 0 0

 , INs
=

 0 0 0
0 INs 0
0 0 0

 and INv
=

 0 0 0
0 0 0
0 0 INv

 . (2.2.17)

The equations (2.2.16) and (2.2.17) are equivalent to finding an orthonormal basis of eigenvectors (which
form the unitary matrix C) of the projectors and selecting the ones corresponding to the eigenvalue 1.
Decomposing C as (Cd|Cs|Cv) we have

Pd = CdC
T
d , Ps = CsC

T
s Pv = CvC

T
v . (2.2.18)

In other words, the set Cd (respectively Cs) is the set of Nd (respectively Ns) natural orbitals associated
to the density matrix Pd (respectively Ps). The orbitals in Cv are then the orthogonal complement to Cd
and Cs. The equations (2.2.18) provide a one-to-one correspondence between (Pd, Ps) ∈ MDM and the
set of occupied natural orbitals JCo = (Cd|Cs)K ∈ MMO.

This relation between MO and DM formalism can be seen in a geometrical setting, by considering the
spaces

Vd = Span
(
ϕi, i ∈ {1, . . . , Nd}

)
and Vs = Span

(
ϕi, i ∈ {Nd + 1, . . . , Nd +Ns}

)
(2.2.19)

spanned by the doubly and singly occupied orbitals respectively. In a discretization basis X , the pair
of spaces (Vd,Vs) can be parametrized by the pair (Pd, Ps) ∈ MDM of respective orthogonal projectors
onto Vd and Vs. It is also parametrized by the coefficients Cd and Cs in the discretization basis X of an
orthonormal basis of Vd and Vs. Now, all basis sets represented by a matrix in JCo = (Cd|Cs)K span the
same spaces. Hence the couple (Vd,Vs) is parametrized by a single point JCoK ∈ MMO. Because of the
orthonormality constraints (2.2.6), Vd and Vs verify{

{0L2(R3)} ( Vd ( Vd ⊕ Vs ( Span (X ),
dim(Vd) = Nd, dim(Vd ⊕ Vs) = Nd +Ns.

(2.2.20)

Mathematically, the pair of spaces (Vd,Vd ⊕ Vs) with property (2.2.20) is called a flag with dimensions
Nd and Nd + Ns. The set of all such pair of spaces has been studied in the mathematical litera-
ture (see e.g. [Lee13, Example 21.22]). It is a smooth manifold called a flag manifold and denoted
Flag(Nd, Nd +Ns;RNb).

From the above reasoning there is a one-to-one correspondence between ROHF states and points on
Flag(N1, N1 +N2;RNb). In other words, the DM and MO sets are two discretizations of the flag manifold
Flag(N1, N1 +N2;RNb), which writes as the diffeomorphisms

MMO(N1, N2;RNb) ' Flag(N1, N1 +N2;RNb) ' MDM(N1, N2;RNb). (2.2.21)
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In order to derive the first-order optimality conditions associated to the minimization problem (2.2.9)
(a.k.a. the ROHF equations in DM formalism) from a simple geometrical argument, we have to iden-
tify the space TxMDM to a point x ∈ MDM of the manifold, that is the vector space of velocities
q = (Qd, Qs) = ṗ(0) at t = 0 for all paths

p : [−1, 1] 3 t 7→ p(t) ∈ MDM, such that p(0) = x (2.2.22)

drawn on MDM (as shown in Fig. 2.1). Similarly, the ROHF equations in MO formalism are found by
identifying the tangent spaces TJyKMMO.

p(t)

x = p(0)q = ṗ(0) TxMDM

MDM

Figure 2.1 – Representation of the tangent space TxMDM at x to the manifold MDM, and a smooth path
p : [−1, 1] 3 t 7→ p(t) ∈ MDM drawn on MDM such that p(0) = x and ṗ(0) = q ∈ TxMDM.

Flag manifolds, such as MDM and MMO have been studied in the context of optimization in the recent
work [YWL22], where the authors derive in particular the formulations for the tangent spaces TxMDM and
TJyKMMO. To keep this article as self contained as possible, and to make it understandable to readers with
limited background in differential geometry, we will adopt in the following section a pedestrian approach,
and re-derive in a few lines the tangent spaces and first order optimality conditions in DM formalism. As
mentioned above, details concerning the MO formalism are reported in appendix.
Remark 2.2.2. In general, a flag of length d in a vector space V of dimension Nb is a sequence of subspaces
{Vi}16i6d of V that is strictly increasing for the inclusion. This is to be understood as V1 ( · · · ( Vd ( V.
A standard example of a flag in V is given by {Vi = Span(e1, · · · , ei)}16i6Nb

where (e1, · · · , eNb
) is the

canonical basis of V. The set of all flags in V with fixed respective dimensions dim(Vi) = ni is also a
smooth manifold denoted Flag(n1, · · · , nd;V) (see e.g. [Lee13, Example 21.22]).

2.2.3 First-order optimality conditions
2.2.3.1 General considerations on optimization in the DM framework

Finding a point x∗ = (Pd∗, Ps∗) in MDM which minimizes the energy functional defined in (2.2.7) requires
the definition of the derivative of E with respect to the pair of density matrices x = (Pd, Ps). The
ROHF energy functional E(Pd, Ps) is not only defined for density matrices, but for any pair of real-valued
symmetric matrix z = (Wd,Ws) ∈ RNb×Nb

sym × RNb×Nb
sym , which might not be admissible density matrices.

Therefore, although the energy gradient ∇E(z) with respect to z = (Wd,Ws) can be easily computed once
a topology, allowing to define the later, has been chosen, imposing ∇E(z) = 0 is not enough to find the
optimal ROHF density matrices because of the constraints imposed by the properties of density matrices
(see Eq. (2.2.10)). The reason for this is that the gradient ∇E(x) has a component outside the manifold
MDM of density matrices, and following that component of the gradient will necessary lead outside the
manifold MDM. As illustrated in Fig. 2.2, the correct ROHF condition is therefore to find the point
x∗ ∈ MDM such that the projection of ∇E(x∗) onto the tangent space Tx∗M is zero.

2.2.3.2 Characterization of the DM tangent spaces

Let p be a path as in (2.2.22). We have for all t ∈ [−1, 1],

p(t) ∈ MDM and p(t) = x+ tq +O(t2) = (Pd + tQd + o(t), Ps + tQs + o(t)), (2.2.23)
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MDM

∇E(x)

TxMDM

MDM

∇E(x∗)

Tx∗MDM
x

x∗

Figure 2.2 – Side view of the manifold MDM with tangent space and ambient ROHF energy gradient at
(left) arbitrary point x (right) at optimal point x∗. The gradient ∇E(x∗) is orthogonal to the tangent
space Tx∗MDM (first order optimality conditions).

where the O(.) and o(.) notations are relative to the usual Euclidean topology. In other words, the
conditions (2.2.23) are equivalent to defining the tangent space TxMDM to x = (Pd, Ps) as the vector
space of pairs of symmetric real matrices q = (Qd, Qs) which allow to locally approximate the manifold of
density matrices MDM by an affine space, as pictorially represented in Fig. 2.1. The constraints defining
the manifold MDM (see Eq. (2.2.10)) are equivalent to the following at first order:

pd(t)2 = pd(t), tr(pd(t)) = Nd ⇔ PdQd +QdPd = Qd, tr(Qd) = 0, (2.2.24)
ps(t)2 = ps(t), tr(ps(t)) = Nd ⇔ PsQs +QsPs = Qs, tr(Qs) = 0, (2.2.25)

pd(t)ps(t) = 0 ⇔ PdQs +QdPs = 0. (2.2.26)

In the representation (2.2.16)-(2.2.17), the constraints (2.2.24)-(2.2.26) are equivalent to

Qd = C

 0 X Y
XT 0 0
Y T 0 0

CT and Qs = C

 0 −X 0
−XT 0 Z

0 ZT 0

CT , (2.2.27)

where X ∈ RNd×Ns , Y ∈ RNd×Nv , Z ∈ RNs×Nv are generic matrices. It follows that for all x = (Pd, Ps)
in MDM:

TxMDM = {(Qd, Qs) ∈ Vsym of the form (2.2.27)}
= {(Qd, Qs) ∈ Vsym | PdQdPd = PsQdPs = PvQdPv = PsQdPv = 0,

PdQsPd = PsQsPs = PvQsPv = PdQsPv = 0, Pd(Qd +Qs)Ps = 0}.

2.2.3.3 ROHF-Brillouin condition in the MO and DM framework

We denote the ambient DM space
VDM = RNb×Nb

sym × RNb×Nb
sym (2.2.28)

endowed with the Frobenius-like scalar product

〈(M1, N1), (M2, N2)〉DM := 1
2 (tr(M1M2) + tr(N1N2)) . (2.2.29)

Thanks to this inner product, the critical points of E on MDM can be characterized in a simple geometric
way (see Fig. 2.2):

x∗ critical point of E on MDM ⇔ ∇E(x∗) ∈ Tx∗M⊥
DM, (2.2.30)

where ∇E(x∗) is the gradient of E for the inner product 〈·, ·〉DM, and Tx∗M⊥
DM the orthogonal subspace

to Tx∗MDM, still for the inner product 〈·, ·〉DM. The condition of Eq. (2.2.30) is equivalent to state that,
taken at the optimal point x∗, the component of ∇E(x∗) on the tangent plane Tx∗M is zero. Recall that
for any x ∈ VDM, ∇E(x) is the vector of VDM characterized by

E(x+ δx) = E(x) + 〈∇E(x), δx〉DM + o(δx),
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which implies that the gradient depends on the choice of inner product. Also, for any x ∈ MDM, the
vector space TxM⊥

DM is defined by

TxM⊥
DM = {q′ ∈ VDM | ∀q ∈ TxM, 〈q, q′〉DM = 0} .

Gradient of E. Let us first detail the computation of ∇E(x) for any ROHF state x = (Pd, Ps) ∈ VDM.
Introducing the Fock operators

Fd(Pd, Ps) := h+ 2J(Pd) + J(Ps) −K(Pd) − 1
2K(Ps), (2.2.31)

Fs(Pd, Ps) := 1
2 (h+ 2J(Pd) + J(Ps) −K(Pd) −K(Ps)) , (2.2.32)

we have for all (Md,Ms) ∈ VDM

E(Pd +Md, Ps +Ms) = tr (h(2Pd + 2Md + Ps +Ms))
+ tr ((2J(Pd +Md) −K(Pd +Md))(Pd +Md + Ps +Ms))

+ 1
2 tr ((J(Ps +Ms) −K(Ps +Ms))(Ps +Ms))

= E(Pd, Ps) + tr (2Fd(Pd, Ps)Md) + tr (2Fs(Pd, Ps)Ms)

+ tr ((2J(Md) −K(Md))(Md +Ms)) + 1
2 tr ((J(Ms) −K(Ms))Ms)

= E(Pd, Ps) + 〈(4Fd(Pd, Ps), 4Fs(Pd, Ps)), (Md,Ms)〉DM

+ tr ((2J(Md) −K(Md))(Md +Ms)) + 1
2 tr ((J(Ms) −K(Ms))Ms) .

The gradient of E at x = (Pd, Ps) for the inner product 〈·, ·〉DM is therefore

∇E(x) = (4Fd(Pd, Ps), 4Fs(Pd, Ps)) with Fd(Pd, Ps) and Fs(Pd, Ps) given by (2.2.31)-(2.2.32). (2.2.33)

Characterization of TxM⊥
DM . Let q′ = (Md,Ms) ∈ VDM. Using the decomposition

Md = U

 Mdd
d Mds

d Mdv
d

Msd
d Mss

d Msv
d

Mvd
d Mvs

d Mvv
d

UT and Ms = U

 Mdd
s Mds

s Mdv
s

Msd
s Mss

s Msv
s

Mvd
s Mvs

s Mvv
s

UT , (2.2.34)

and the fact that Md and Ms are symmetric matrices, we obtain that for all q = (Qd, Qs) ∈ TxMDM of
the form (2.2.27),

〈q, q′〉DM = 1
2 tr

U
 0 X Y

XT 0 0
Y T 0 0

UTU

 Mdd
d Mds

d Mdv
d

Msd
d Mss

d Msv
d

Mvd
d Mvs

d Mvv
d

UT


+ 1

2 tr

U
 0 −X 0

−XT 0 Z
0 ZT 0

UTU

 Mdd
s Mds

s Mdv
s

Msd
s Mss

s Msv
s

Mvd
s Mvs

s Mvv
s

UT


⇔ 〈q, q′〉DM = tr

(
XT (Mds

d −Mds
s )
)

+ tr
(
Y TMdv

d

)
+ tr

(
ZTMsv

s

)
. (2.2.35)

Now, q′ belongs to the orthogonal subspace TxM⊥
DM if 〈q, q′〉DM = 0 for all q ∈ TxMDM. Therefore,

according to Eq. (2.2.35)

q′ ∈ TxM⊥
DM ⇔

(
Mds
d −Mds

s = 0, Mdv
d = 0, Msv

s = 0
)
. (2.2.36)

The critical points x∗ = (Pd∗, Ps∗) of E on MDM are then characterized by the first-order optimality
condition of Eq. (2.2.30), which according to Eqs. (2.2.33) and (2.2.36), leads to

(Fd∗ − Fs∗)ds = 0, F dvd∗ = 0, F svs∗ = 0, with Fd∗ := Fd(Pd∗, Ps∗) and Fs∗ := Fs(Pd∗, Ps∗).
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We recover the well-known ROHF optimality conditions (see e.g. [PD14]), which can also be written as{
Pd∗(Fd∗ − Fs∗)Ps∗ = 0, Pd∗Fd∗Pv∗ = 0, Ps∗Fs∗Pv∗ = 0,
with Fd∗ := Fd(Pd∗, Ps∗) and Fs∗ := Fs(Pd∗, Ps∗). (2.2.37)

We can similarly derive the optimality conditions in the MO representation, by endowing

VMO := RNb×No

with the Frobenius inner product

〈Co|C ′
o〉MO = tr

(
CTo C

′
o

)
= tr

(
CTd C

′
d

)
+ tr

(
CTs C

′
s

)
. (2.2.38)

This inner product is natural since it reproduces the L2-inner product. A calculation reported in appendix
shows that for all y = (Cd, Cs) ∈ VMO

∇E(y) = (4Fd(CdCTd , CsCTs )Cd, 4Fs(CdCTd , CsCTs )Cs) (2.2.39)

and that y∗ = (Cd∗, Cs∗) ∈ MMO is a critical point of E on MMO if and only if

Fd∗Cd∗ = Cd∗(CTd∗Fd∗Cd∗)1
2(Cs∗(CTs∗(Fd∗ + Fs∗)Cd∗),

Fs∗Cs∗ = Cs∗(CTs∗Fs∗Cs∗) + 1
2Cd∗(CTd∗(Fs∗ + Fd∗)Cs∗),

with Fd∗ := Fd(Cd∗C
T
d∗, Cs∗C

T
s∗) and Fs∗ := Fs(Cd∗C

T
d∗, Cs∗C

T
s∗).

(2.2.40)

It can be checked that C∗ = (Cd∗, Cs∗) ∈ MMO is solution to (2.2.40) if and only if (Pd∗, Ps∗) ∈ MDM is
solution to (2.2.37), where Pd∗

:= Cd∗C
T
d∗, Ps∗

:= Cs∗C
T
s∗. An important implication of Eqs. (2.2.40) is

that, unlike in the RHF and UHF frameworks, the optimal ROHF orbitals in Cd∗ and Cs∗ are not eigen-
functions of the Fock operators Fd∗ and Fs∗, because of the second term in the right hand side of the first
two equations in (2.2.40). As a consequence, SCF algorithms based on Fock-like operators involve ad-hoc
effective Hamiltonians for which the Aufbau principal is not always satisfied (see for instance Ref. [PD14]).

2.3 Self-consistent field (SCF) algorithms
In this section, we first present the various basic SCF iterations proposed in the literature, and introduce
a new one, which better respects the mathematical structure of the ROHF equations (2.2.37) and (2.2.40).
We then discuss the stabilization and acceleration of basic SCF iterations using Anderson-Pulay (DIIS-
type) algorithms.

2.3.1 Basic SCF iterations
The basic SCF algorithm for RHF was introduced by Roothaan [Roo60]. It consists in assembling the
Fock matrix for the current iterate (molecular orbitals or density matrix), diagonalize it (we still assume
orthonormality of the basis set for simplicity), and select the lowest energy eigenvectors to form the next
iterate (Aufbau principle). This idea can be straightforwardly extended to the UHF model, but not to the
ROHF model since the ROHF equations (2.2.40) cannot be formulated as a nonlinear eigenvalue problem.

Let x(k) = (P (k)
d , P

(k)
s ) ∈ MDM be the current iterate and

P
(k)
d = C(k)IdC(k)T , P (k)

s = C(k)IsC(k)T , C(k)C(k)T = INb
,

with C(k) = (C(k)
d |C(k)

s |C(k)
v ) ∈ O(Nb) the associated matrix of natural orbitals via (2.2.16). Let also

F
(k)
d := Fd(P (k)

d , P
(k)
s ) and F

(k)
s := Fs(P (k)

d , P
(k)
s ) be the associated Fock matrices:

F
(k)
d = C(k)

 F
(k)
d

dd
F

(k)
d

ds
F

(k)
d

dv

F
(k)
d

sd
F

(k)
d

ss
F

(k)
d

sv

F
(k)
d

vd
F

(k)
d

vs
F

(k)
d

vv

C(k)T , F (k)
s = C(k)

 F
(k)
s

dd
F

(k)
s

ds
F

(k)
s

dv

F
(k)
s

sd
F

(k)
s

ss
F

(k)
s

sv

F
(k)
s

vd
F

(k)
s

vs
F

(k)
s

vv

C(k)T .
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2.3.1.1 Standard approaches

The most popular simple SCF for ROHF consists in assembling and diagonalizing a composite effective
Hamiltonian of the form

H
(k)
A,B := C(k)

 R
(k)
dd (F (k)

d − F
(k)
s )ds F

(k)
d

dv

(F (k)
d − F

(k)
s )sd R

(k)
ss F

(k)
s

sv

F
(k)
d

vd
F

(k)
s

vs
R

(k)
vv

C(k)T , (2.3.1)

where R(k)
dd , R(k)

ss , and R
(k)
vv are symmetric matrices. The matrices R(k)

tt are of the form

R
(k)
tt = 2Att

(
F (k)
s

)tt
+ 2Btt

(
F

(k)
d − F (k)

s

)tt
, t ∈ {d, s, v},

where A = (Add, Ass, Avv) ∈ R3 and B = (Bdd, Bss, Bvv) ∈ R3 are coefficients characterizing the SCF
algorithm (see Table I in [PD14]). For instance, they are all equal to 1/2 in Guest and Saunders algorithm
[GS74], but are different and depend on the spin state in the Canonical-I and Canonical-II algorithms
introduced by Plakhutin and Davidson [PD14]. The next iterate (P (k+1)

d , P
(k+1)
s ) is obtained by filling

up first the doubly occupied orbitals, then the singly occupied orbitals, using the Aufbau principle. The
meta-algorithm for the basic SCF iteration is summarized in the algorithm 1. The iterates are uniquely

Algorithm 1: Standard SCF iteration for ROHF

Given: x(k) = (P (k)
d , P

(k)
s ) ∈ MDM, A = (Add, Ass, Avv) and B = (Bdd, Bss, Bvv).

1. Assemble H(k)
A,B and diagonalize in an orthonormal basis

H
(k)
A,BC

(k+1)
i = ε

(k+1)
i C

(k+1)
i , (C(k+1)

i )TC(k+1)
j = δij , ε

(k+1)
1 6 · · · 6 ε

(k+1)
Nb

.

2. Select the No first orbitals via the Aufbau principle

C
(k+1)
d = (C(k+1)

1 | · · · |C(k+1)
Nd

), C(k+1)
s = (C(k+1)

Nd+1 | · · · |C(k+1)
Nd+Ns

).

3. Construct the new iterate via (2.2.3)

P
(k+1)
d = C

(k+1)
d C

(k+1)
d

T
, P (k+1)

s = C(k+1)
s C(k+1)

s

T
, x(k+1) = (P (k+1)

d , P
(k+1)
d ).

defined provided
ε

(k+1)
Nd

< ε
(k+1)
Nd+1 and ε

(k+1)
No

< ε
(k+1)
No+1 (2.3.2)

(energy gaps between doubly and single-occupied orbitals on the one-hand, occupied and virtual orbitals
on the other hand). If the conditions (2.3.2) are not satisfied, iterates are defined by choosing randomly the
orbitals among those satisfying the Aufbau principle, or by selecting the ones minimizing the ROHF energy
functional. The SCF procedure interprets as a fix point method on the function gA,B : VDM −→ MDM
defined by

gA,B(x(k)) := x(k+1), with x(k+1) = (P (k+1)
d , P (k+1)

s ) as in algorithm 1. (2.3.3)
The basic SCF iterations (2.3.3) being extremely unstable (see section 2.4), they are generally stabilized
by direct inversion of the iterative subspace (DIIS) schemes [Pul80; Pul82; HP86; RS11; Chu+21].

A necessary and sufficient condition for (Pd∗, Ps∗) ∈ MDM to be a fixed point of gA,B is

HA,B∗Ci∗ = εi∗Ci∗, CTi∗Cj∗ = δij , ε1∗ 6 · · · 6 εNo∗. (2.3.4)

Let x∗ = (Pd∗, Ps∗) be such a fixed point and C∗ the associated matrix of natural orbitals via (2.2.3).
Then

Pd∗HA,B∗Ps∗ = Pd∗(Fd∗ − Fs∗)Ps∗ =
No∑

i=Nd+1
Pd∗HA,B∗Ci∗C

T
i∗ =

No∑
i=Nd+1

εi∗ Pd∗Ci∗︸ ︷︷ ︸
=0

CTi∗ = 0.
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A similar argument leads to Pd∗Fd∗Pv∗ = 0 and Ps∗Fs∗Pv∗ = 0 so that x∗ satisfy the optimality conditions
(2.2.37). Conversely, if x∗ satisfies (2.2.37), then HA,B∗ = diag (Rdd, Rss, Rvv) is bloc diagonal in the
orthogonal decomposition Ran(Pd∗) ⊕ Ran(Ps∗) ⊕ Ran(Pv∗) of RNb . Therefore, we have

HA,B∗Ci∗ = εi∗Ci∗, CTi∗Cj∗ = δij ,

Pd∗ =
Nd∑
i=1

Ci∗C
T
i∗, Ps∗ =

No∑
i=Nd+1

Ci∗C
T
i∗,

for some orthonormal basis (Ci∗)1≤i≤Nb
of RNb diagonalizing HA,B∗. It follows that a point x∗ ∈ MDM

is a critical point of E if and only if x∗ satisfies the conditions (2.3.4) except possibly the fact that the
doubly-occupied orbitals do not necessarily correspond to the lowest Nd eigenvalues of HA,B∗, or the singly-
occupied orbitals to the next Ns ones, which is equivalent to saying that the Aufbau principle does not
need to be satisfied a priori. As discussed in [PD14], there are indeed local minima of the ROHF problem
for which the Aufbau principle is not satisfied for any of the usual choices of A and B. We are therefore
facing a dilemma. Either the Aufbau principle can be kept in the definition of the SCF procedure, leading
to a simple iterative scheme, which is however unable to find the ROHF ground state in some cases. Or
the Aufbau principle can be discarded and replaced by a more complicated construction procedure, to be
specified.

2.3.1.2 A new strategy not based on the Aufbau principle

A way out of this dilemma is to attack the problem from a different perspective, using another interpre-
tation of the Roothaan scheme in DM formalism: in the RHF setting, the next iterate P (k+1) obtained
by an SCF iteration is the point P of the RHF manifold

MRHF
DM :=

{
P ∈ RNb×Nb

sym | P 2 = P, tr(P ) = Nd
}

in the direction along which the slope of the function t 7→ ERHF(P (k) +t(P −P (k))) is minimum [Can+03],
i.e.

P (k+1) ∈ argmin
P∈MRHF

DM

〈
∇ERHF(P (k))

∣∣P〉
VRHF

DM

= argmin
P∈MRHF

DM

Tr
[
FRHF(P (k))P

]
(2.3.5)

where FRHF(P ) = 1
2 ∇ERHF(P ) is the Fock matrix associated with the density matrix P , and where

VRHF
DM = RNb×Nb

sym is the ambient vector space for the RHF problem. In (2.3.5), argmin refers to the set of
minimizers of the linear form P −→

〈
∇ERHF(P (k)), P

〉
VRHF

DM
on MRHF

DM , to which P (k+1) belongs. This set
is always non empty, but may contain several elements. Transposing this characterization to the ROHF
setting, we can define a new basic SCF scheme on the manifold MDM: x(k+1) := (P (k+1)

d , P
(k+1)
s ) is

the point x ∈ MDM in the direction along which the slope of the function t 7→ E(x(k) + t(x − x(k))) is
minimum. It is therefore obtained from x(k) = (P (k)

d , P
(k)
s ) as

x(k+1) ∈ argmin
x∈MDM

〈∇E(x(k)), x〉VDM = argmin
x=(Pd,Ps)∈MDM

tr
(
F

(k)
d Pd

)
+ tr

(
F (k)
s Ps

)
, (2.3.6)

where F (k)
d := Fd(P

(k)
d , P

(k)
s ) and F (k)

s := Fs(P
(k)
d , P

(k)
s ). This motivates the introduction of the new basic

SCF scheme in algorithm 2 . The fixed points (Pd∗, Ps∗) of this SCF scheme verifies

Algorithm 2: New SCF iteration on MDM

Given: (P (k)
d , P

(k)
s ) ∈ MDM.

1. Compute the Fock matrices F (k)
d = Fd(P

(k)
d , P

(k)
s ) and F

(k)
s = Fs(P

(k)
d , P

(k)
s )

2. Choose next iterate (P (k+1)
d , P

(k+1)
s ) in

argmin
{

Tr
[
F

(k)
d Pd + F (k)

s Ps

]
, (Pd, Ps) ∈ MDM

}
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{
(Pd∗, Ps∗) ∈ argmin {E∗(Pd, Ps), (Pd, Ps) ∈ MDM} ,

with E∗(Pd, Ps) = tr(Fd(Pd∗, Ps∗)Pd) + tr(Fs(Pd∗, Ps∗)Ps).
(2.3.7)

Again this SCF procedure can be interpreted as a fix-point method on the function

gnew(x(k)) := x(k+1), with x(k+1) = (P (k+1)
d , P (k+1)

s ) as in algorithm 2. (2.3.8)

As E∗ is a linear form, its gradient is constant and equal for the inner product 〈·, ·〉VDM to (4Fd∗, 4Fs∗).
Replacing E with E∗ in the arguments in Section 2.2.3.3, we obtain that (2.3.7) implies (2.2.37), hence
that any fixed point (Pd∗, Ps∗) of the function gnew is a critical point of E on MDM.

The inner optimization problem

argmin
{

Tr
(
F

(k)
d Pd + F (k)

s Ps

)
, (Pd, Ps) ∈ MDM

}
(2.3.9)

on MDM solved at each step is easier and much cheaper to solve numerically than the original problem
(2.2.9) since the function (Pd, Ps) 7→ Tr(F (k)

d Pd + F
(k)
s Ps) is linear while the ROHF energy function

E(Pd, Ps) is nonlinear (see Eq. (2.2.7)). In particular, the Coulomb and Fock terms are not recomputed
at each iteration. To solve it, we can use a direct minimization algorithm with initial guess in

argmin
{

Tr(H(k)Pd + 1
2H

(k)Ps), (Pd, Ps) ∈ MDM

}
, (2.3.10)

where H(k) = F
(k)
d , or H(k) = H

(k)
A,B , with H

(k)
A,B given by (2.3.1). The solutions to (2.3.10) are easily

obtained by diagonalizing H(k) and applying the Aufbau principle. For H(k) = H
(k)
A,B , the iterate of the

new basic SCF scheme (2) is obtained using gA,B(P (k)
d , P

(k)
s ) as initial guess for the minimization problem

(2.3.9). It is also possible and more efficient in some cases to use, as an initial guess for the minimization
problem (2.3.9), the previous iterate (P (k−1)

d , P
(k−1)
s ). Let us mention however that this approach only

provides local (non-necessarily global) minima of (2.3.9). In practice, we choose for (P (k+1)
d , P

(k+1)
s ) the

approximation of the local minimum of (Pd, Ps) 7→ Tr(F (k)
d Pd + F

(k)
s Ps) on MDM obtained by a few

iterations of a preconditioned steepest-descent algorithm.

2.3.2 Anderson-Pulay (DIIS-type) acceleration
Anderson-Pulay acceleration (APA) is a terminology recently coined in [Chu+21] to gather various accel-
eration schemes into a general framework, including the Anderson acceleration scheme [And65] and the
DIIS scheme. Anderson-Pulay acceleration methods can be applied to any fixed-point problems of the
form

find x∗ ∈ W such that g(x∗) = x∗ (2.3.11)

where g : W → M is a C2 function from an open subset W of Rn into a smooth submanifold M of Rn.
In addition to the fix point map g, APA schemes require a residual function f : W → Rp of class C2 with
p 6 n, such that for any x ∈ W, g(x) = x if and only if f(x) = 0 (the residual vanishes at solutions to
the fixed point problem and only at those points). A possible choice is f(x) = x − g(x) (in which case
p = d), but the performance of the algorithm can usually be dramatically improved by resorting to well
suited residual functions. The APA schemes are based on linear combinations of the current iterate with
the previous ones, up to a certain depth 0 6 m 6 mmax. As an example, the standard DIIS acceleration
scheme writes for a given depth m, and fix-point map g

x(k+1) = g(ADIIS(x(k), . . . x(k−m))) (2.3.12)

where the map ADIIS is defined as follows. Let r(k) := f(x(k)) and define

Y (k) =
[
x(k−m+1) − x(k−m), · · · , x(k) − x(k−1)

]
, S (k) =

[
r(k−m+1) − r(k−m), · · · , r(k) − r(k−1)

]
.

Then
ADIIS(x(k), · · · , x(k−m)) := x(k) + r(k) − (Y (k) + S (k))α(k), (2.3.13)
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where the coefficients α(k) ∈ Rm are solution to the least square problem

α(k) ∈ argmin
α∈Rm

∥∥∥r(k) − S (k)α
∥∥∥2

Rp
.

Mathematical studies on the convergence of DIIS algorithms can be found in [RS11; CKL21; Chu+21].
The parameter mmax must be chosen large enough (typically mmax = 10 or 20 in quantum chemistry
packages) to ensure fast convergence, using sufficient information from previous iterations. One of the
limitations of DIIS is that iterates with large residuals (far away from the minimizer) are considered as
well, whereas they should be discarded. To cure this deficiency, an adaptive depth approach is proposed
in [Chu+21], which should be investigated.

Choice of g. In order to be applied to SCF iterations, we need an iteration function defined in an open
neighborhood W of MDM since the points A(x(k), . . . , x(k−m)), which are linear combinations of points
of MDM, do not belong to MDM in general. We can directly use one of the basic SCF iteration functions
gA,B or gnew corresponding to the respective algorithms 1 and 2, since they are defined for any point of
VDM.

Choice of f . From (2.2.37), a natural choice for the residual function is to take for all x = (Pd, Ps)

f(Pd, Ps) := ((Fd(Pd, Ps) − Fs(Pd, Ps))ds, (Fd(Pd, Ps))dv, (Fs(Pd, Ps))sv) (2.3.14)

which is the projection on TxM⊥
DM of the gradient ∇E(x). Remark that this is but a geometrical derivation

of the standard commutator based residual used e.g. in GAMESS. In DIIS algorithms, the residual function f
is only evaluated at points of the manifold MDM, but must have a C2 extension to W for local convergence
to be mathematically guaranteed [Chu+21]. This is obviously the case for the function f defined by (2.3.14)
on MDM.

2.3.2.1 Relaxed constrained algorithms for ROHF

Relaxed constrained algorithms for the Unrestricted and General Hartree-Fock setting were introduced
in [CB00]. They consist in optimizing the energy functional in the DM formulation on the convex hull
of the admissible set. For the UHF and GHF problems, it can be shown that the relaxed constrained
problem has the same global minimizers as the original one [Can00; CKL21]. The advantage of the relaxed
constrained problems is that convex combinations of admissible solutions are admissible solutions as well.

Algorithm 3: ODA iteration for ROHF

Given: current Fock-like matrices (F̃ (k)
d , F̃

(k)
s )

1. Pick (P (k+1)
d , P

(k+1)
s ) ∈ argmin

{
Tr
(
F̃

(k)
d Pd + F̃

(k)
s Ps

)
, (Pd, Ps) ∈ MDM

}
2. Compute the Fock matrices F (k+1)

d := Fd(P (k+1)
d , P

(k+1)
s ), F (k+1)

s := Fs(P (k+1)
d , P

(k+1)
s ) and set

(P̃ (k+1)
d , P̃

(k+1)
s ) = (1 − tk)(P̃ (k)

d , P̃
(k)
s ),+tk(P (k+1)

d , P
(k+1)
s )

(F̃ (k+1)
d , F̃

(k+1)
s ) = (1 − tk)(F̃ (k)

d , F̃
(k)
s ),+tk(F (k+1)

d , F
(k+1)
s )

where tk is the minimizer of the quadratic function

[0, 1] 3 t 7→ E((1 − t)(P̃ (k)
d , P̃ (k)

s ) + t(P (k+1)
d , P (k+1)

s )).

The simplest relaxed constrained algorithm is the optimal damping algorithm (ODA). It generates two
sequences of iterates:

• a sequence (x(k)) of points on the admissible manifold MDM;

• a sequence (x̃(k)) of points in the convex hull of MDM.
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The point x̃(k+1) is obtained by doing an optimal convex combination of x̃(k) and x(k+1):

tk = argmin
t∈[0,1]

E(tx(k+1) + (1 − t)x̃(k)), x̃(k+1) = tkx
(k+1) + (1 − tk)x̃(k).

The function pk(t) := E(tx(k+1) + (1 − t)x̃(k)) is a second degree polynomial and we have

pk(0) = E(x̃(k)) and p′
k(0) = 〈∇E(x̃(k)), x(k+1) − x̃(k)〉VDM .

Computing pk(1) = E(x(k+1)), we obtain the value of tk explicitly. The point x(k+1) is chosen so as to
minimize the slope p′

k(0); it is therefore obtained from x̃(k) as

x(k+1) ∈ argmin
x∈MDM

〈∇E(x̃(k)), x〉VDM = gnew(x̃(k)),

where gnew is defined in (2.3.8). The ODA is initialized by choosing an initial guess x(0) = (P (0)
d , P

(0)
s ) in

MDM, by setting x̃(0) = x(0), and by computing (F̃ (0)
d , F̃

(0)
s ) = (Fd(P

(0)
d , P

(0)
s ), Fs(P

(0)
d , P

(0)
s )). One then

performs ODA iteration as written in algorithm 3.

2.4 Numerical results

2.4.1 Methodology and summary of the results
We now analyze the performance of the algorithms introduced in this article which are

• the standard SCF (algorithm 1) and new SCF (algorithm 2), with respective fix point map gA,B and
gnew, endowed with a DIIS acceleration with residual f given by (2.3.14);

• the ODA scheme as described in algorithm 3.

Convergence behaviors are investigated in two distinct regimes:

• the global convergence regime. The goal here is to reach the vicinity of a minimizer, starting from
a bad initial guess obtained in practice by diagonalizing the core Hamiltonian;

• the local convergence regime, when the initial guess is close to a minimizer. We choose in this study
the extended Hückel initial guess derived from the Wolfsberg-Helmholtz approximation [WH52;
Hof63; Amm+78].

Our implementation. The application of the gnew map requires to solve the inner optimization problem
(2.3.9). In our implementation, we use the initial guess (2.3.10) with H(k) = F

(k)
d . We then apply a

maximum of 10 iterations of preconditioned steepest descent on the DM manifold.
For the ODA method, it happens in some cases that the coefficient tk of the ODA convex combination

becomes zero, which results in the algorithm getting stuck on the iterate x(k). In that case, we automati-
cally try a different guess for the inner problem (2.3.9). Using a guess generated with gA,B and Euler or
Guest and Saunders coefficients whenever tk = 0 proved effective in all the cases we encountered.

The new algorithms we introduce, along with the classical SCF schemes, have been implemented in a
Julia [Bez+17] package as a proof of concept. This package is built as an overlay to the PySCF [Sun+20]
python library, which handles the core computations for ROHF (generation of the AO basis and initial
MOs, computation of the electronic integrals). Comprehensive details of implementation can be found in
our open-source research code https://github.com/LaurentVidal95/ROHFToolkit. The best performing
algorithms will be added as a plugin within the Quantum Package [Sce+16; Gar+19] and made freely
available to the community.
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Comparison to external code. In order to assert the validity of our code, we compare the perfor-
mances of our algorithms with the SCF algorithms for ROHF available in GAMESS [Sch+93]. We have
chosen this popular software because all the classical functions gA,B are implemented, as well as the resid-
ual (2.3.14) for DIIS and the SOSCF algorithm. We have also run tests with PySCF and Psi4 [Tur+12]
(which respectively implement Roothan and Guest and Saunders’ gA,B). The DIIS residual functions
implemented in these codes can be slightly different but all also use commutator-based residual functions
à la Pulay [Pul82], involving the effective Hamiltonian HA,B .

The initial guesses for the SCF problem, the one generated by GAMESS and those employed in our
implementation (generated by PySCF), can differ significantly. Specifically, the extended Hückel guess
in GAMESS tends to yield energies approximately 1 to 2 Ha above the ground state energy in our test
cases, while the PySCF Hückel guesses produce initial energies ranging from 20 to 60 Ha above the ground
state. To ensure methodological consistency, and facilitate the direct comparison between the two codes,
we manually imported the GAMESS Hückel guess in our code for the 6-31G basis set [HP74; Fra+82;
Bla+97] for some of our test cases. We observed no qualitative difference for this choice of basis set.
Unfortunately, the two quantum chemistry packages employ different conventions in generating atomic
basis sets, particularly concerning the number and order of the atomic orbitals, which makes the systematic
import of GAMESS guesses in our code a laborious task. The comparison with GAMESS should therefore only
serve as a qualitative evaluation of our implementation.

Global convergence regime. First, the algorithms are tested by starting very far from an expected
minimum, i.e. starting from a core Hamiltonian diagonalization guess, obtained with GAMESS and PySCF
respectively. Poor quality guesses do not usually verify the Aufbau principle on which the classical SCF
methods, built with function gA,B (2.3.3), rely (as recalled section 2.3). Numerical results presented in
Section 2.4.3.1 confirm that, unlike the classical SCF methods for ROHF, which mostly fail to converge
in this regime (in all the tested cases but the simplest one), our methods built on gnew, which are free of
Aufbau principle requirement, exhibit a strong robustness with respect to the initial guess.

Local convergence regime. As detailed in section 2.4.3.2, existing methods built on the classical gA,B
barely benefit from the use of an extended Hückel guess, which is more commonly used in practice. Only
two or four choices of Att and Btt coefficients, depending on the test case, yield convergence for these so-
called gA,B-based methods (see Table 2.4), with the Guest and Saunders choice being the most successful.
Our gnew–based methods, that are free of the choice of such coefficients, manage to converge in all cases
from this starting guess.

Local minima. The respective gA,B-based methods, as well as our gnew-based methods, converge toward
a variety of local minima. The list of all minima have been reported in appendix. Note that the variation in
the implementation of basis sets between GAMESS and our code results in a minor difference in energies.
A detailed analysis of the encountered local minima, reached from the core guess and from the Hückel
guess, would be needed to assess their quality. It appears that in some cases, the local minima found by
starting from the core initial guess, are lower in energy than other minima reached from extended Hückel
initial guesses. One should elaborate further on this point in another study.

Our best performing method. When focusing on the energy only, the ODA algorithm seems to target
a low minima, independently of the initial guess, while being very slow to converge to chemical accuracy.
Applying a few iterations of ODA, followed by gnew+DIIS to help convergence is a good candidate for an
efficient black-box SCF less sensitive to the initial starting point (see Table 2.5).

Throughout the next sections, qualitative convergence results are tagged with the following convention:

• non-convergence: the energies of the iterates oscillate above the ground state energy by at least
10−2 Ha and the residual does not go to zero. In many cases, the oscillations occur between 1 and
100 Ha above the ground state energy;

• stagnation or small-amplitude oscillations : the algorithm stalls or the iterates display small-
amplitude oscillations while the residual is small but not small enough in the sense that the limit
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values of the energy are 10−4 to 10−2 Ha higher than the ground state energy (or another local
minimum)

• X convergence to a local minimizer.

2.4.2 Basic SCF iterations
We first illustrate the limitations of the classical iteration functions gA,B, as defined in (2.3.3), and the
relevance of the new iteration function gnew defined in (2.3.8), by analyzing the behavior of the correspond-
ing basic SCF algorithms x(k+1) = g(x(k)) (without any stabilization/acceleration technique) on simple
mono-atomic systems: an oxygen atom in the triplet state, Fe2+ and Fe3+ ions in high-spin configurations
(respectively quintet and sextet states).

Recall that the function gA,B is computed by diagonalizing an effective Hamiltonian depending on the
input ROHF state and ad hoc coefficients Att and Btt, and constructing the output ROHF state using
the Aufbau principle (see Section 2.3). The performance of the basic SCF algorithm x(k+1) = gA,B(x(k))
is found to be very sensitive to the choice of the Att and Btt coefficients; besides, no choice of coefficients
provides consistent convergence for the three simple systems. In contrast, the basic fixed-point algorithm
built upon the parameter-free iteration function gnew has been able to converge for the three systems. The
results reported in Table 2.1 have been obtained with the double-zeta correlation-consistent Dunning’s
type basis set (cc-pVDZ) [Dun89] and the Hückel initial guess from PySCF. Qualitatively similar results
have been obtained with the core initial guess and/or other basis sets (e.g 6-31G, pc-1).

Method Att Btt
O

(triplet)
Fe2+

(quintet)
Fe3+

(sextet)
Roothan (− 1

2 ,
1
2 ,

3
2 ) ( 3

2 ,
1
2 ,−

1
2 ) X(17) X(45)

McWeeny and Diercksen ( 1
3 ,

1
3 ,

2
3 ) ( 2

3 ,
1
3 ,

1
3 ) X(13)

Davidson ( 1
2 , 1, 1) ( 1

2 , 0, 0) X(12)

Guest and Saunders ( 1
2 ,

1
2 ,

1
2 ) ( 1

2 ,
1
2 ,

1
2 ) X(11) X(22)

Binkley, Pople and Dobosh ( 1
2 , 1, 0) ( 1

2 , 0, 1) X(10)

Faegri and Manne ( 1
2 , 1,

1
2 ) ( 1

2 , 0,
1
2 ) X(11)

Euler equations ( 1
2 ,

1
2 ,

1
2 ) ( 1

2 , 0,
1
2 ) X(10)

Canonical-ROHF I ( 2S+1
2S , 1, 1) (− 1

2S , 0, 0) X(11)

Canonical-ROHF II (0, 0,− 1
2S ) (1, 1, 2S+1

2S ) X(20)

gnew (2.3.8) parameter free X(10) X(21) X(12)

Table 2.1 – Convergence of the basic fixed-point algorithm x(k+1) = g(x(k)) for the atomic systems O, Fe2+,
and Fe3+ (cc-pVDZ basis set, PySCF Hückel initial guess), for (i) the classical gA,B iteration functions (see
Table I in Ref. [PD14]), and (ii) the gnew iteration function (this work). The table follows the conventions
detailed in the introduction to Section 2.4. The number of iterations needed to reach convergence is
specified when the algorithm happens to converge (chosen convergence criterion: the energy of the current
iterate is at most 10−6 Ha above the ROHF ground state).

2.4.3 Stabilized and accelerated iteration schemes
Table 2.2 summarizes the benchmark systems considered in this section. They consist of organic molecules
bearing aromatic moieties (such as pyridine or porphyrin), interacting with open-shell metallic ions (see
Figure 2.3). These systems are representative of the complexity of open-shell calculations in quantum
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chemistry as they contain transition metal ions with high spin in interaction with non trivial aromatic
organic ligands [LMA18]. The combination of strong repulsion in the 3d shell of the metals together
with the very delocalized character of the π system in these organic ligands can lead to SCF instabilities
precisely because, according to the choice of the flavor of effective Hamiltonian used in the gAB function,
the Aufbau principle is not fulfilled in these systems. We have picked up both systems having space
symmetries, such as pyridine–Cu2+ (Cs symmetry) and the Porphyrin model–Fe2+ (D4h symmetry), and
systems with slightly broken symmetry, such as Pyridine–Fen+. We infer the spin multiplicities M = 2S+1
of these systems (where S is the total spin) from the corresponding spin multiplicities of the metallic ions,
following Hund’s rule. In some cases, it is actually challenging to determine the spin multiplicity of the
ground state (e.g. triplet or quintet), such as for the iron–porphyrin model system [LMA18]. We have
performed some test calculations on a full Porphyrin–Fe2+ system (37 atoms, 269 basis functions for 6-
31G), that yielded qualitatively similar results as for the Porphyrin model–Fe2+ system. For the sake of
brevity, we do not report them here.

System Number
of atoms Nd / Ns

Multiplicity
(2s+1) Basis

Number of
basis

functions
Pyridine – Cu2+ 12 34 / 1 2 6-31G 93
Pyridine – Cu2+ 12 34 / 1 2 cc-pVDZ 164
Pyridine – Fe2+ 12 31 / 4 5 6-31G 93
Pyridine – Fe2+ 12 31 / 4 5 cc-pVDZ 164
Pyridine – Fe3+ 12 30 / 5 6 6-31G 93
Pyridine – Fe3+ 12 30 / 5 6 cc-pVDZ 164

Porphyrin model – Fe2+ 29 66 / 4 5 6-31G 197
Porphyrin Fe2+ 37 90 / 4 5 6-31G 269

Table 2.2 – Benchmark systems used in Section 2.4.3.

Figure 2.3 – Left: Pyridine - Cu2+. Middle: Porphyrin model – Fe2+ taken from [LMA18]. Right:
Porphyrin – Fe2+. Figures have been generated with the Vesta software [MI08].

We have tested several families of basis sets representative of quantum chemistry calculations, i.e. the
6-31G and cc-pVDZ basis sets.

2.4.3.1 Global convergence regime

In this section, we analyze the ability of the various algorithms described in Section 2.3 to reach the
vicinity of a local minimizer from the core initial guess. We consider that this is achieved if the energies
of the iterates approach 0.1 Ha from the ROHF ground state energy. We compare the new algorithms
proposed in this work with existing algorithms as implemented in GAMESS [Sch+93], namely the SOSCF
algorithm and the DIIS schemes built from the iteration functions gA,B and residual function f (2.3.14).
The results for the molecular systems in Table 2.2 in the 6-31G basis set are gathered in Table 2.3.
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Algorithms based on gA,B iteration functions. We observe in the second and third columns of
Table 2.3 that the results of the GAMESS implementation of DIIS are close to our DIIS implementation.
For several choices of coupling coefficients Att, Btt, the standard SCF+DIIS method fails to converge,
and leads to oscillations. For the Pyridine−Fe2+ and Fe3+ systems, and (respectively) for the Porphyrin
model − Fe2+ system, only three (resp. two) specific choices of Att, Btt coefficients lead to convergence
(notably Guest and Saunders and Roothaan). The results for the Pyridine−Cu2+ system (not reported)
are qualitatively the same (only Guest and Saunders, Euler, Roothaan and Canonical II choices of Att,
Btt coefficients lead to convergence of GAMESS DIIS or of our DIIS implementation).

Remarkably, forcing DIIS (resp. SOSCF) from the first iterations is needed in GAMESS, as the DIIS
residual (resp. gradient norm) is initially much higher than the default threshold for DIIS (resp. SOSCF)
activation. Let us underline that acceleration methods such as DIIS, are designed to accelerate local
convergence (i.e. convergence when starting close enough to a local minimum). They are now well-
understood mathematically in this setting [Chu+21]. In contrast, the fact that DIIS can stabilize SCF
iterations starting from core initial guess in some cases (this is not always true) remains unexplained to
our knowledge.

The SOSCF second-order method converges whatever the choice of Att, Btt coefficients (except one,
namely Canonical II, for the Pyridine−Fe2+ system) from the core guess, although always in more than
200 iterations. Forcing DIIS (resp. SOSCF) from the first iterations is needed in GAMESS, as the DIIS
residual (resp. gradient norm) is initially much higher than the default threshold for DIIS (resp. SOSCF)
activation.

Algorithms based on the gnew iteration function. As shown in the last two columns of Table
2.3, the DIIS algorithm based on the iteration function gnew and the residual function f , as well as
the ODA algorithm 3, provide robust schemes for all systems, except for the case of porphyrin model-
Fe2+ with gnew+DIIS. Forcing a restart of the DIIS yields convergence in that case. Note that our current
implementation was built as a proof-of-concept. Our method could potentially benefit from a more refined
choice of preconditioning for the resolution of the subproblem (2.3.9), or from an adaptive depth DIIS
approach, as introduced in [Chu+21], which we defer to future investigations.

For the other cases, the gnew+DIIS method is competitive with the converging standard SCF schemes
in terms of iterations. The gnew+DIIS require more computational time than the gA,B standard SCFs,
since each iteration involves the approximate resolution of the optimization problem (2.3.9). This is
compensated by the absence of parameters in this method, and the convergence across almost all studied
cases.

While the ODA method is very effective to reach the attraction basin of a local minimizer, it is very
slow to converge to chemical accuracy. As the iterations approach a local minimum, the coefficient tk of
the ODA convex combination consistently equals 1, effectively reducing ODA to a simple SCF with gnew
map and no DIIS. A good compromise is to transition from ODA to gnew+DIIS when sufficiently close to a
local minimum (Table 2.5), mimicking the efficient EDIIS+DIIS method of [KSC02] in the RHF case. This
transition can occur when the energy gradient reaches a specified tolerance, or when the ODA coefficient
tk takes the value 1 repeatedly. We chose the first option with threshold 10−1 in our implementation.
Notably, applying ODA before gnew+DIIS seem to allow to target a lower local minimum, as appearing
in appendix, Table 2.6.
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GAMESS [Sch+93] This work
gA,B (2.3.3) - based methods gnew (2.3.8) - based methods

Att, Btt (see Table 2.1) SOSCF DIIS DIIS DIIS ODA
Pyridine–Fe2+

Guest and Saunders X(244;313) X(12;37) X(9;59)

X(8;55) X(4;+1000)

Roothaan X(212;263) X(28;109) X(13;145)
Euler X(218;265) X(28;95)

Mc Weeny X(204;254)
Binkley X(262;352)
Faegri X(235;278)

Davidson X(230;273)
Canonical I X(262;329)
Canonical II

Pyridine–Fe3+

Guest and Saunders X(236;290) X(16;132) X(11;193)

X(8;54) X(8;+1000)

Roothaan X(221;263) X(19;72) X(17;116)
Euler X(227;277) X(41;181) X(7;112)

Mc Weeny X(217;273)
Binkley X(216;272)
Faegri X(323;374)

Davidson X(259;328)
Canonical I X(246;317)
Canonical II X(236;305)

Porphyrin model–Fe2+

Guest and Saunders X(202;215) X(15;22) X(18;26)

X(10,+1000)

Roothaan X(203;219) X(21;34) X(34;49)
Euler X(202;218)

Mc Weeny X(202;219)
Binkley X(203;213)
Faegri X(203;216)

Davidson X(203;221)
Canonical I X(203;212)
Canonical II X(294;346)

Table 2.3 – Convergence results starting from core initial guess (6-31G basis set). The table follows the
conventions detailed in the introduction to Section 2.4. The DIIS residual function f is the one defined
in (2.3.14). The DIIS maximum depth parameter mmax is fixed to 10 (default value in GAMESS). The
notation (napproach;ncv) means that napproach iterations are needed to reach 0.1 Ha accuracy, while ncv
iterations are necessary to reach microHartree accuracy.
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GAMESS [Sch+93] This work
gA,B (2.3.3) - based methods gnew (2.3.8) - based methods

Att, Btt (see Table 2.1) SOSCF DIIS DIIS DIIS ODA
Pyridine–Fe2+

Guest and Saunders X(78) X(82) X(100)

X(92) X(+1000)

Roothaan X(83) X(255) X(212)
Euler X(40) X(59) X(68)

McWeeny X(42) X(105) X(271)
Binkley X(106)
Faegri X(106)

Davidson X(87)
Canonical I X(88)
Canonical II X(42)

Pyridine–Fe3+

Guest and Saunders X(78) X(178) X(187)

X(142) X(+1000)

Roothaan X(88) X(185) X(139)
Euler X(50)

McWeeny X(88)
Binkley X(93)
Faegri X(92)

Davidson X(94)
Canonical I X(95)
Canonical II X(54)

Porphyrin model–Fe2+

Guest and Saunders X(22) X(17)

X(25) X(+1000)

Roothaan X(23) X(37) X(52)
Euler X(29) X(25) X(72)

Mc Weeny X(36) X(32) X(187)
Binkley X(23)
Faegri X(22)

Davidson X(21)
Canonical I X(24)
Canonical II X(29)

Table 2.4 – Convergence results starting an extended Hückel initial guess (6-31G basis set). The table
follows the conventions detailed in the introduction to Section 2.4. The DIIS residual function f is the one
defined in (2.3.14). The DIIS maximum depth parameter mmax is fixed to 10 (default value in GAMESS).
The number of iterations in parentheses is the one needed to reach microHartree accuracy.

ODA + gnew-DIIS (2.3.8)
Initial guess Pyridine–Fe2+ Pyridine–Fe3+ Porphyrin model–Fe2+

Core X(8,92) X(7,83) X(10,18)
Extended Hückel X(60) X(144) X(28)

Table 2.5 – Convergence results by starting with ODA iterations and switching to DIIS when the residual
norm reaches a tolerance of 10−2. The DIIS depth parameter mmax is fixed to 10 (default value in
GAMESS). The number of iterations needed to reach convergence at microHartree precision is specified
in parenthesis

2.4.3.2 Local convergence

We now compare the different algorithms starting from an extended Hückel initial guess, whose energy
is about 1 to 2 Ha above the ground state for our test cases in the GAMESS implementation, and 20 to 60
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Ha for PySCF. The difference between the two guesses is most notable for the Porphyrin model − Fe2+

system.

Algorithms based on gA,B iteration functions. Comparing the results in Tables 2.3 and 2.4, we
observe that DIIS algorithms as implemented in GAMESS barely benefit from a better initial guess. Four
different choices of Att, Btt coefficients lead to convergence for Pyridine–Fe2+ and Porphyrin model −
Fe2+ systems (two for Pyridine–Fe3+) for DIIS.

Again, the SOSCF second-order method converges whatever the choice of Att, Btt coefficients, in less
than 100 iterations (thanks to the improved starting guess) except for two specific choices of coefficients
(106 iterations needed with Binkley and Faegri coefficients, for Pyridine–Fe2+ system).

Algorithms based on the gnew iteration function. Both the DIIS and the ODA converge for all the
four systems. As in the previous case, the ODA algorithm is very slow to converge to chemical accuracy
and ODA followed by gnew+DIIS provides satisfactory convergence results.

2.5 Conclusion and perspectives
In this article, we have provided a geometrical derivation of the ROHF equations in the density matrix
and molecular orbital formalisms. A fundamental aspect of that derivation is, for both formalisms, the
characterization of the tangent space of the manifold of ROHF states at a critical point of the ROHF energy
functional, as well as its orthogonal complement (for the Frobenius inner product). This analysis lead us to
introduce a new, parameter-free, iteration function gnew (see Eq. (2.3.8)), as an alternative to Roothaan-
like iteration functions gA,B based on the construction of a (non-physical) effective Hamiltonian HA,B ,
where A = (Add, Ass, Add) and B = (Bdd, Bss, Bdd) collect six real empirical parameters. An important
conceptual difference of the proposed new SCF algorithm with respect to previous works is that it is not
based on the usual technique of diagonalization of Fock-like Hamiltonians which can lead to numerical
instabilities when the Aufbau principle is not fulfilled. Thanks to its geometrical formulation, the present
algorithm avoids the ambiguity of the orbital energies for which the Koopman theorem does not apply in
the case of the ROHF framework.

The numerical results we report seem to indicate that the DIIS algorithm based on the usual gAB frame-
work with the Guest and Saunders (Att = Btt = 1

2 ) and Roothaan (Att =
(
− 1

2 ,
1
2 ,

3
2
)
, Btt =

( 3
2 ,

1
2 ,−

1
2
)
)

iteration functions are quite robust and converge in a reasonable number of iterations, even when starting
from the core initial guess. However, these observations, made on a small number of test cases (the ones
reported in this paper plus a dozen of other challenging cases), do not guarantee that this algorithm will
perform well for all systems and basis sets. Remarkably, the DIIS acceleration has to be enabled from the
first iteration to guaranty convergence, which does not correspond to the default setting in most quantum
chemistry codes, where DIIS is activated only when close enough to a local minimum.

The numerical results reported here based on our new parameter-free iteration function gnew are
encouraging as the latter converge for all but a single systems tested in this work, which involves different
open-shell transition metal ions interacting with aromatic ligands. The algorithms based on the parameter-
free iteration function gnew may then provide a useful alternative to the gA,B iteration functions for very
challenging systems. In particular, the ODA (involving gnew) seems to be extremely robust and efficient
in the early iterations, to reach the attraction basin of a local minimizer. Using ODA for the first few
iterations, followed by gnew+DIIS is a good candidate for a robust black-box SCF routine.
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Supplementary Material for reproductibility
The Supplementary Material contains the atomic coordinates of the benchmark systems studied in the
article. The research code used to produce the numerical data is available at https://github.com/
LaurentVidal95/ROHFToolkit.

Appendix A: First-order optimality conditions in MO formalism.
As seen in Section 2.2, the manifold of ROHF states in MO formalism is the quotient manifold

MMO = St(No;RNb)/(ONd
× ONs

).

In DM formalism, MDM is embedded in VDM, so that the tangent space of MDM at a point x can be
directly identified with a subspace of VDM (see Fig. 2.2). Unfortunately, this is not the case for the
quotient MMO. Following [AMS08], a way around the problem (valid for general quotient manifolds) is to
identify the tangent space TJCoKMMO at given equivalence class JCoK with a subspace of TCoSt(No;RNb),
called the horizontal tangent space at Co to the manifold St(No;RNb), and denoted T h

Co
St(No;RNb). We

therefore start by computing the expression of the tangent spaces TCo
St(No;RNb).

Tangent spaces of St(No;RNb). Let Co = (Cd, Cs) ∈ St(No;RNb). The orthonormality condition
Co

TCo = INo translates on Cd and Cs as CTd Cd = INd
, CTs Cs = INs and CTd Cs = 0. This writes at first

order for a perturbation z = (Dd|Ds) ∈ RNb×No

CTd Dd +DT
d Cd = 0 (1)

CTs Ds +DT
s Cs = 0 (2)

CTd Ds +DT
d Cs = 0 (3).

Let Cv be the orthogonal complement of Co such that C = (Cd|Cs|Cv) ∈ ONb
, and let us decompose Dd

and Ds in the basis C:
Dd = Cd(Dd

d)T + Cs(Ds
d)T + Cv(Dv

d)T
Ds = Cd(Dd

s)T + Cs(Ds
s)T + Cv(Dv

s )T . (2.5.1)

Then from (1) and (2), there exists Ad ∈ RNd×Nd

skew and As ∈ RNs×Ns

skew such that (Dd
d)T = Ad and

(Ds
s)T = As. Now (3) writes

CTd (CsAs + Cd(Dd
s)T + Cv(Dv

s )T ) + (−AdCd +Ds
dC

T
s +Dv

dC
T
v )Cs = Ds

d + (Dd
s)T = 0

⇔ Ds
d = −(Dd

s)T .

We deduce that for all Co = (Cd|Cs), the tangent space TCoSt(No;RNb) is made of all z = (Dd|Ds) ∈ RNb×No

such that
Dd = CdAd + CsX

T + CvY
T and Ds = −CdX + CsAs + CvZ

T (2.5.2)

where X ∈ RNd×Ns , Y ∈ RNd×Nv and Z ∈ RNs×Nv . This also abbreviate as

z = C

 Ad −X −Y
XT As −Z
Y T ZT 0

( INo

0

)
. (2.5.3)

Horizontal tangent space. Now let π : St(No;RNb) → MMO be the canonical projection on MMO

∀Co ∈ St(No;RNb) π(Co) = JCoK.

We define the vertical tangent space T v
Co

St(No;RNb) at Co as

T v
Co

St(No;RNb) = TCo
π−1(JCoK).
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and the horizontal tangent space T h
Co

St(No;RNb) as its orthogonal complement for the MO scalar product
〈Co|C ′

o〉 = Tr(CTo C ′
o):

TCoSt(No;RNb) = T h
Co

St(No;RNb) ⊕ T v
Co

St(No;RNb).

Intuitively, T h
Co

St(No;RNb) only contains the directions of TCoSt(No;RNb) that allow escape the equiva-
lence class JCoK, so that one has the important property [AMS08]

TJCoKMMO ' T h
Co

St(No;RNb). (2.5.4)

Following the same procedure as for TCo
St(No;RNb) and TxMDM, we can show that

T h
Co

St(No;RNb) =
{

(CsXT + CvY
T | − CdX + CvZ

T ) where X ∈ RNd×Ns , Y ∈ RNd×Nv , Z ∈ RNs×Nv
}

(2.5.5)

T v
Co

St(No;RNb) =
{

(CdAd|CsAs) where Ad ∈ RNd×Nd

skew , As ∈ RNs×Ns

skew

}
(2.5.6)

First order optimality conditions. From (2.5.4) and (2.5.5) the first order optimality conditions
write in MO formalism as

∇E(Co∗) ∈ T h
Co∗

St(No;RNb)⊥. (2.5.7)

A straigthforward computation shows that for all Co = (Cd|Cs), the ambiant gradient for the standard
Frobenius scalar product writes

∇E(Co) = (4FdCd|4FsCs). (2.5.8)

It now remains to find T h
Co

M⊥
MO. Once again consider Co = (Cd|Cs) ∈ St(No;RNb) and Cv be such that

C = (Cd|Cs|Cv) ∈ ONb
. For all W = (Wd|Ws) ∈ VMO, decomposing W on C as in (2.5.1) yields

W ∈ T h
Co

St(No;RNb)⊥ ⇔
{

Tr(XT (W s
d − (W d

s )T ) + Y TW v
d + ZTW v

s ) = 0,
∀X ∈ RNd×Ns , Y ∈ RNd×Nv , Z ∈ RNs×Nv

⇔
{
W v
d = W v

s = 0
W s
d = (W d

s )T .

⇔
{

∃Md ∈ RNd×Nd , Ms ∈ RNs×Ns , X ∈ RNd×Ns

such that W = (CdMT
d + CsX

T |CdX + CsM
T
s ).

Using (2.5.7) and (2.5.8), there exists Md ∈ RNd×Nd , Ms ∈ RNs×Ns and X ∈ RNd×Ns such that

4Fd∗Cd∗ = Cd∗M
T
d + Cs∗X

T and 4Fs∗Cs∗ = Cd∗X + Cs∗M
T
s . (2.5.9)

Multiplying both expression by CTd or CTs we obtain

Md = 4CTd∗Fd∗Cd∗, Ms = 4CTs∗Fs∗Cs∗, X = 2CTd∗(Fd∗ + Fs∗)Cs∗ (2.5.10)

so that the optimality conditions finally write
Fd∗Cd∗ = Cd∗

(
CTd∗Fd∗Cd∗

)
+ 1

2Cs∗
(
CTs∗(Fd∗ + Fs∗)Cd∗

)
Fs∗Cs∗ = Cs∗

(
CTs∗Fs∗Cs∗

)
+ 1

2Cd∗
(
CTd∗(Fd∗ + Fs∗)Cs∗

)
.

(2.5.11)

Appendix B: List of local minima
We provide here the energies at convergence for each system, algorithm, and initial guess. Table 2.6
corresponds to the energies associated to the results of Table 2.3 while Table 2.7 corresponds to the
energies associated to the results of Table 2.4. Finally, Table 2.8 corresponds to the energies reached by
the ODA + gnew+DIIS method picture in Table 2.5
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GAMESS [Sch+93] This work
gA,B (2.3.3) - based methods gnew (2.3.8) - based methods

Att, Btt (see Table 2.1) SOSCF DIIS DIIS DIIS ODA
Pyridine–Fe2+

Guest and Saunders -1508.134652 -1508.134652 -1508.014203

-1508.014203 -1508.131670

Roothaan -1508.016536 -1508.134040 -1508.131670
Euler -1508.016536 -1508.016536

Mc Weeny -1508.016536
Binkley -1508.134652
Faegri -1508.016536

Davidson -1508.016536
Canonical I -1508.134652
Canonical II

Pyridine–Fe3+

Guest and Saunders -1507.414473 -1507.414091 -1507.411509

-1507.407360 -1507.411509

Roothaan -1507.414473 -1507.343997 -1507.411889
Euler -1507.414473 -1507.414097 -1507.411509

Mc Weeny -1507.414473
Binkley -1507.414473
Faegri -1507.414473

Davidson -1507.414473
Canonical I -1507.414473
Canonical II -1507.414473

Porphyrin model–Fe2+

Guest and Saunders -1940.163309 -1940.513025 -1940.510151

-1940.510191

Roothaan -1940.163309 -1940.335945 -1940.647646
Euler -1940.163309

Mc Weeny -1940.163309
Binkley -1939.977138
Faegri -1939.977138

Davidson -1939.977138
Canonical I -1940.075387
Canonical II -1940.267466

Table 2.6 – Energies at convergence starting from a core initial guess with 6-31G basis set. The table
follows the conventions detailed in the introduction to Section 2.4. The notation DIIS refers to a DIIS
method using f as residual function. The DIIS depth parameter mmax is fixed to 10 (default value in
GAMESS). All energies are expressed in Hartrees.
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GAMESS [Sch+93] This work
gA,B (2.3.3) - based methods gnew (2.3.8) - based methods

Att, Btt (see Table 2.1) SOSCF DIIS DIIS DIIS ODA
Pyridine–Fe2+

Guest and Saunders -1508.134652 -1508.013967 -1508.132280

-1508.131670 -1508.131670

Roothaan -1508.016536 -1507.967145 -1508.131671
Euler -1508.134652 -1508.134652 -1508.002054

Mc Weeny -1508.134652 -1508.134652 -1508.132280
Binkley -1508.134652
Faegri -1508.134652

Davidson -1508.134652
Canonical I -1508.134652
Canonical II -1508.134652

Pyridine–Fe3+

Guest and Saunders -1507.414473 -1507.409935 -1507.411510

-1507.411509 -1507.411509

Roothaan -1507.414473 -1507.409935 -1507.411889
Euler -1507.357499

Mc Weeny -1507.357499
Binkley -1507.414473
Faegri -1507.414473

Davidson -1507.414473
Canonical I -1507.414473
Canonical II -1507.357499

Porphyrin model–Fe2+

Guest and Saunders -1940.406548 -1940.513025

-1940.510191 -1940.510191

Roothaan -1940.406548 -1940.335945 -1940.510151
Euler -1940.385615 -1940.513025 -1940.654531

Mc Weeny -1940.650207 -1940.513025 -1940.527432
Binkley -1940.513025
Faegri -1940.513025

Davidson -1939.977138
Canonical I -1940.513025
Canonical II -1940.650207

Table 2.7 – Energies at convergence starting from an extended Hückel initial guess with 6-31G basis set.
The table follows the conventions detailed in the introduction to Section 2.4. The notation DIIS refers to
a DIIS method using f as residual function. The DIIS depth parameter mmax is fixed to 10 (default value
in GAMESS). All energies are expressed in Hartrees.

ODA + gnew-DIIS (2.3.8)
Initial guess Pyridine–Fe2+ Pyridine–Fe3+ Porphyrin model–Fe2+

Core -1508.131670 -1507.411509 -1940.510191
Extended Hückel -1508.131670 -1507.411509 -1940.510191

Table 2.8 – Energies at convergence obtained with a few iterations of ODA, followed by gnew+DIIS. The
algorithm transitions from ODA to DIIS when the residual norm reaches a tolerance of 10−2. The DIIS
depth parameter mmax is fixed to 10 (default value in GAMESS). All energies are expressed in Hartrees.
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